
Gröbner Bases over Algebraic Number Fields

Dereje Kifle Boku
Department of Mathematics
University of Kaiserslautern

Germany
boku@

mathematik.uni-kl.de

Wolfram Decker
Department of Mathematics
University of Kaiserslautern

Germany
decker@

mathematik.uni-kl.de
Claus Fieker

Department of Mathematics
University of Kaiserslautern

Germany
fieker@

mathematik.uni-kl.de

Andreas Steenpass
Department of Mathematics
University of Kaiserslautern

Germany
steenpass@

mathematik.uni-kl.de

ABSTRACT
Although Buchberger’s algorithm, in theory, allows us to
compute Gröbner bases over any field, in practice, however,
the computational efficiency depends on the arithmetic of
the ground field. Consider a field K = Q(α), a simple exten-
sion of Q, where α is an algebraic number, and let f ∈ Q[t]
be the minimal polynomial of α. In this paper we present
a new efficient method to compute Gröbner bases in poly-
nomial rings over the algebraic number field K. Starting
from the ideas of Noro [11], we proceed by joining f to the
ideal to be considered, adding t as an extra variable. But
instead of avoiding superfluous S-pair reductions by invert-
ing algebraic numbers, we achieve the same goal by applying
modular methods as in [2, 3, 10], that is, by inferring infor-
mation in characteristic zero from information in character-
istic p > 0. For suitable primes p, the minimal polynomial
f is reducible over Fp. This allows us to apply modular
methods once again, on a second level, with respect to the
factors of f . The algorithm thus resembles a divide and
conquer strategy and is in particular easily parallelizable.
At current state, the algorithm is probabilistic in the sense
that, as for other modular Gröbner basis computations, an
effective final verification test is only known for homoge-
neous ideals or for local monomial orderings. The presented
timings show that for most examples, our algorithm, which
has been implemented in Singular [7], outperforms other
known methods by far.

Keywords
Gröbner bases, algebraic number fields, factorization, Chi-
nese remainder theorem, modular algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PASCO ’15, July 10 - 12, 2015, Bath, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3599-7/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2790282.2790284

1. INTRODUCTION
From the theoretical point of view, Gröbner bases com-

putations can be done over any field by using Buchberger’s
algorithm (see, for example, [1, 6, 8]). In particular, they
can be performed over an algebraic number field, but the
computation is often inefficient if the arithmetic operations
in this field are used directly. Consider a simple extension
K = Q(α) of Q. Let f ∈ Q[t] be the minimal polynomial of
α. The algebraic number field K can be represented as the
residue class ring Q[t]/〈f〉, and a Gröbner basis computa-
tion over K can then be reduced to one over Q by joining f
to the ideal to be considered. Unfortunately, this method is
not satisfactory in view of efficiency. One of the reasons for
this is that over the field of rational numbers, we often suffer
from coefficient swell. Various methods to avoid this have
been investigated; the trace algorithm [13] and modular al-
gorithms [2, 10] are successful in this direction. But using
these approaches, we still have to deal with the complicated
arithmetic in algebraic number fields, in particular with the
computation of inverses.

In this paper we present a new efficient method to com-
pute Gröbner bases over an algebraic number field. Start-
ing from a polynomial ring over Q as explained above, we
apply the modular methods for computing Gröbner bases
discussed in [2, 3, 10] to pass to positive characteristic p.
Choosing a set P of suitable prime numbers, see Defini-
tion 5.2, the image fp of f in Fp[t] is, for p ∈ P, reducible
and square-free. We can thus again apply modular meth-
ods, with respect to the factors f1,p, . . . , frp,p of fp, passing
to the rings Fp[t]/〈fi,p〉. As above, we avoid computing in
quotient rings by joining fi,p to the ideal to be considered.
Having computed the corresponding reduced Gröbner basis
for each of these factors, we first recombine the results to a
set of polynomials Gp over Fp[t]/〈fp〉 using Chinese remain-
dering for polynomials. In a second lifting step, the sets Gp,
p ∈ P, are then used to reconstruct a set of polynomials G
over Q, via Chinese remaindering for integers and rational
reconstruction. Finally, we test whether G is indeed the re-
duced Gröbner basis of the input ideal. If not, we enlarge P
and repeat the process.

In Section 2, we introduce some notation which is used
throughout this article. The structure of the new method

1

http://dx.doi.org/10.1145/2790282.2790284

is outlined in Section 3. Since this method relies on the
Chinese remainder algorithm applied to different domains,
we shortly recall the relevant theoretical background in Sec-
tion 4. The core part of the proposed algorithm is discussed
in Section 5. Here we explain how modular methods are
applied on different levels and why our approach is consid-
erably faster than other known methods. The application
of modular methods follows a well-known scheme, see [3].
For reference, we recall the relevant parts of this scheme in
Section 6. An illustrating example is given in Section 7.
Finally, Section 8 contains remarks on the implementation
of the new method in Singular [7] and timings comparing
it to other approaches. The benchmark problems which we
used for the timings are listed in the appendix.

2. NOTATION
Let K = Q(α) be an algebraic number field and let f ∈

Q[t] be the minimal polynomial of the algebraic number α.
Then every element of K can be written as a linear combi-
nation of elements in {1, α, α2, . . . , αd−1} where d = deg f .
Hence we may regard every element of K as a polynomial
in α with coefficients in Q. Let X = {x1, . . . , xn} be a set
of variables, and let t be an extra variable. Consider the
polynomial rings S = Q(α)[X], T = Q[X, t], and Q[t]. Fix a
global monomial ordering �1 on the monoid of monomials
Mon(X) and consider the product ordering �K := (�1,�)
on Mon(X, t), where � is the global ordering on Mon(t).
Note that this implies Xa �K tb for all a ∈ Nn \{(0, . . . , 0)}
and b ∈ N.

Let H̃ = {g1(X, t), . . . , gs(X, t)} be a subset of T , let I ⊆
S be the ideal generated by H := {g1(X,α), . . . , gs(X,α)},
and let Ĩ ⊆ T be the ideal generated by H̃ ∪ {f}. Fur-

thermore, let G̃ ⊆ T be the reduced Gröbner basis (see [8,

Definition 1.6.2]) of Ĩ w.r.t. �K . Let ϕ be the canonical
homomorphism from T to S which leaves the xi fixed and
maps t to α. We will show, in Theorem 5.1, that the non-

zero elements of ϕ(G̃) ⊆ S form the reduced Gröbner basis
of I w.r.t. �1.

For a carefully chosen prime p (see Definition 5.2) which
does not divide any denominator of the coefficients of f and
g1(X, t), . . . , gs(X, t), we consider the map from Q to Fp
which sends a

b
to ab−1 ∈ Fp. Applying this map to the

coefficients, we write fp := (f mod p) ∈ Fp[t] and Ĩp :=
〈g1(X, t)p, . . . , gs(X, t)p, fp〉 ⊆ Fp[X, t]. Furthermore, for a
polynomial q ∈ S and a set G ⊆ S, we use the following
notation:
lm(q): the leading monomial of q,
Lm(G): the set of leading monomials of the elements in G,
lc(q): the leading coefficient of q,
lt(q): the leading term or head of q,
tail(q) := q − lt(q): the tail of q.

3. STRUCTURE OF THE NEW METHOD
Noro [11] has presented a modified version of Buchberger’s

algorithm which computes Gröbner bases over an algebraic
number field using the arithmetic in Q[t]/〈f〉. Instead of
computing in the ring (Q[t]/〈f〉)[X], one might as well add
the minimal polynomial f to the ideal to be considered
and work over Q[X, t], see Theorem 5.1. In this situation,
the elements of a reduced Gröbner basis are, except f it-
self, all monic in (Q[t])[X], that is, they are of the form

Xa + (lower terms), see the proof of Theorem 5.1. Noro no-
ticed that during the execution of Buchberger’s algorithm,
many (superfluous) intermediate basis elements of the form
tbXa + (lower terms) are computed before a monic element
Xa + (lower terms) is generated. Of course, each additional
basis element produces new S-pairs which usually make the
subsequent computation inefficient. Noro has resolved this
problem by making each generated basis element monic in
(Q[t])[X] before it is added to the basis. For this, the in-
verse of an algebraic number has to be computed which is in
general computationally expensive. Instead, we use a differ-
ent approach to reduce the number of basis elements which
are computed before a monic element Xa + (lower terms) is
generated.

The new method computes the reduced Gröbner basis of
the input ideal in three steps: In the first step, for a suitable
prime p such that fp ∈ Fp[t] is reducible and square-free, see

Definition 5.2, we compute the reduced Gröbner basis G̃p of

Ĩp over Fp w.r.t. �K , as follows: Let fp =
∏

1≤i≤rp fi,p be

the irreducible factorization of fp over Fp, with rp > 1. Set

Ĩi,p := 〈H̃p ∪ {fi,p}〉 ⊆ Fp[X, t]. For each i ∈ {1, . . . , rp},
we compute the reduced Gröbner basis G̃i,p of Ĩi,p. Using
the Chinese remainder algorithm for polynomials (see Al-

gorithm 1 below), we determine a set of polynomials G̃p ≡(
G̃i,p \ {fi,p}

)
mod fi,p which together with fp is the re-

duced Gröbner basis of Ĩp with high probability (see Re-
mark 5.6). Note that, at this step of the algorithm, comput-
ing modulo the different factors of the minimal polynomial

fi,p (by adding them to the ideal 〈H̃p〉) is, from the theo-
retical point of view, just the same as computing modulo
several prime numbers, see Section 4.

In the second step, following [2, 10], we use the Chinese
remainder algorithm for integers together with rational re-
construction to lift these results to the reduced Gröbner ba-
sis G̃ of Ĩ. In the last step, we lift G̃ to a Gröbner basis G
of I over K by mapping t to α (see Theorem 5.1).

The idea of the algorithm is based on the concepts of mod-
ular methods and univariate polynomial factorization over
finite fields. For the former we need the Chinese remainder
theorem.

4. FACTORIZATION AND THE CHINESE
REMAINDER ALGORITHM

The well-known Chinese remainder theorem is essential
for our algorithm.

Theorem 4.1 ([14, Corollary 5.3]). Let R be a Eu-
clidean domain and let m1, . . . ,mr ∈ R be coprime elements
so that gcd(mi,mj) = 1 for 0 ≤ i < j ≤ r. Let m =
m1 · · ·mr be the product of these elements. Then R/〈m〉 is
isomorphic to the product ring R/〈m1〉 × . . . × R/〈mr〉 via
the isomorphism

R/〈m〉 → R/〈m1〉 × . . .×R/〈mr〉 ,
a 7→ (amodm1, . . . , amodmr) .

For our purpose, we need this theorem in the following
two incarnations.

Corollary 4.2. Let p1, . . . , pk be distinct prime num-
bers, and let N = p1 · · · pk be their product. Then we have

2

the following isomorphism:

Z/〈N〉 ∼= Fp1 × . . .× Fpk .

The second application of the Chinese remainder theorem
refers to univariate polynomial rings over finite fields.

Corollary 4.3. Let f1,p, . . . , frp,p ∈ Fp[t] be pairwise
coprime polynomials, and let fp = f1,p · · · frp,p be their prod-
uct. Then we have the ring isomorphism

Fp[t]/〈fp〉 ∼= Fp[t]/〈f1,p〉 × . . .× Fp[t]/〈frp,p〉 .

The proof of Theorem 4.1 is constructive (see [14, The-
orem 5.2, Corollary 5.3]) and yields the Chinese remainder
algorithm. For reference, we state it here in the form of
Corollary 4.3, see Algorithm 1.

Algorithm 1 Chinese Remainder Algorithm (CRA) for
polynomials

Input: q1, . . . , qrp ∈ Fp[t], f1,p, . . . , frp,p ∈ Fp[t] pairwise
coprime.

Output: g ∈ Fp[t] such that g ≡ qi mod fi,p for 1 ≤ i ≤
rp.

1: g ←− 0
2: fp ←−

∏
1≤i≤rp fi,p

3: for i = 1, . . . , rp do

4: hi ←−
fp
fi,p

5: by the Extended Euclidean Algorithm [14, Algo-
rithm 3.14], compute si, ti ∈ Fp[t] such that

sihi + tifi,p = 1

6: ci ←− NF(qisi, fi,p)
(ci is the remainder in Fp[t] on dividing qisi by fi,p)

7: g ←− g + cihi
8: return g

Remark 4.4.
a) Since cihi ≡ 0 mod fj,p for j 6= i and cihi ≡ qisihi ≡

qi mod fi,p, we have

g ≡ cihi ≡ qi mod fi,p .

Hence, the algorithm works correctly.

b) Although stated here for Fp[t], Algorithm 1 works for
polynomial rings over any ground field.

c) Instead of q1, . . . , qrp ∈ Fp[t], Algorithm 1 can also be
applied coefficient-wise to polynomials with coefficients
in Fp[t].

5. GRÖBNER BASES USING FACTORIZA-
TION AND MODULAR METHODS

As Noro does (see [11, Theorem 1]), we rely on the follow-
ing result whose proof we give for the lack of reference.

Theorem 5.1. Let G̃ be the reduced Gröbner basis of Ĩ

w.r.t. �K . Then (G̃ \ {f})|t=α is the reduced Gröbner basis
of I w.r.t. �1.

Consider the ring homomorphism

ϕ : T −→ S, t 7−→ α, xi 7−→ xi .

Since ϕ is the identity map on Q[X], we get an isomorphism

S ∼= T/〈f〉 .

Clearly, ϕ(Ĩ) = I. We are now ready to prove Theorem 5.1.

Proof. Without loss of generality, we may assume that

Ĩ 6= 〈1〉. Let

G̃ = {m1(X, t), . . . ,ma(X, t),ma+1(X, t)}

be the reduced Gröbner basis of Ĩ. We first prove that f ∈ G̃.

Suppose f /∈ G̃. Then there exists a non-zero non-constant

polynomial f ′ ∈ G̃ ∩Q[t] with deg f ′ < deg f . Hence

I = ϕ(Ĩ) = 〈ϕ(f ′), ϕ(G̃ \ {f ′})〉 = 〈1〉

since ϕ(f ′) is invertible in S. This implies Ĩ = 〈1〉, a con-
tradiction. So, f = mi(X, t) for some i, say i = a+ 1. Then
we have

ϕ(G̃ \ {f}) = {m1(X,α), . . . ,ma(X,α)}

= (G̃ \ {f})|t=α =: G .

The result follows easily once we show that the leading co-
efficient of m(X, t), considered as an element in the polyno-

mial ring Q[t], is equal to 1 for all m(X, t) ∈ G̃ \ {f}. To
prove this statement, suppose there is an index 1 ≤ j ≤ a
such that lt(mj(X, t)) = c ·Xδ with c ∈ Q[t] and deg c > 0.
Clearly, c is monic. Write

mj(X, t) = c ·Xδ + V (X, t)

where V (X, t) = tail(mj(X, t)), which implies that V (X, t)
does not contain any term divisible by Xδ. We have deg c <
deg f and therefore gcd(c, f) = 1 since f is irreducible.
Thus, by the extended Euclidean algorithm (see [14, Algo-
rithm 3.14]), there exist a, b ∈ Q[t] such that a · c+ b · f = 1.
Considering the polynomial a ·mj(X, t) + b · f ·Xδ, we have

〈G̃〉 3 a ·mj(X, t) + b · f ·Xδ

= (a · c+ b · f) ·Xδ + a · V (X, t)

= Xδ + a · V (X, t) =: F (X, t) .

But lt(F (X, t)) = Xδ divides c ·Xδ = lt(mj(X, t)) which is

a contradiction to the choice of G̃.

The notion of primes which are admissible of type A w.r.t.
a monic irreducible polynomial, which is essential for our
algorithm, is defined as follows:

Definition 5.2. Let f ∈ Q[t] be as given above. Let p be
a prime not dividing any numerator or any denominator of
the coefficients occurring in f . We say that p is admissible
of type A w.r.t. f if fp is reducible and square-free over Fp.
In this case, we write fp as fp =

∏
1≤i≤rp fi,p.

For a non-zero polynomial g ∈ T considered as a poly-
nomial in X over Q[t], that is, g ∈ (Q[t])[X], let Sg be the
set of all distinct coefficients (in Q[t]) of g of degree greater
than or equal to 1. That is,

Sg =
{

lcQ[t](u) | u is a term of g with deg(lcQ[t](u)) ≥ 1
}
.

3

With notation as above, the notion of primes which are
admissible of type B w.r.t. a monic irreducible polynomial
and a set of polynomials is defined as follows:

Definition 5.3 (Weak version). Let H̃ = {g1(X, t),
. . . , gs(X, t)} be as given above. Let p be a prime not divid-
ing any numerator or any denominator of the coefficients

occurring in H̃. We say that p is admissible of type B w.r.t.

f and H̃ if p is admissible of type A w.r.t. f and if, for each

g in H̃, none of the elements in Sg is divisible by any of the
factors of fp over Fp.

To see the relevance of this definition, consider the ideal

J = 〈x2 + xy + t, x+ y + t− 1〉 =: 〈h1, h2〉 ⊆ Q[x, y, t]

and the minimal polynomial f = t3 + t + 1. If p = 3, then
fp ≡ (t−1)(t2+t−1) =: f1,p ·f2,p mod p and, using the de-
gree reverse lexicographic ordering with x � y, the reduced
Gröbner bases of the ideals Jp + 〈f1,p〉 and Jp + 〈f2,p〉 in
Fp[x, y, t] are {1} and {t2 + t − 1, y + 1, x + t + 1}, respec-
tively. In this case, Algorithm 1 cannot be applied since the
sizes of these sets do not fit. The calculation suggests that
the reason for this is that the element t − 1 ∈ Sh2 vanishes
when reduced w.r.t. the set {t− 1, t2 + t− 1}.

Next, consider the ideal J ′ = 〈x2 + xy + t, t2x + y〉 =:
〈g1, g2〉. Here, the reduced Gröbner bases of the ideals J ′p +
〈f1,p〉 and J ′p+〈f2,p〉 are {1} and {t2+t−1, x+yt−t, y2−1},
respectively. Again the sizes of these sets do not coincide,
hence, we still cannot apply Algorithm 1. Moreover, none
of the coefficients in Sg1 and Sg2 is divisible by either f1,p
or f2,p which shows that the condition in Definition 5.3 is
not sufficient. Indeed, the element t2 ∈ Sg2 vanishes when
reduced w.r.t. the set {t2 + t− 1, t− 1}. Therefore, we may

impose a stronger condition by saying that for all g ∈ H̃
none of the elements in Sg vanishes when reduced w.r.t.
the set {f1,p, . . . , frp,p} (in some order) and thus reduce the
probability that the reconstruction fails. In the following
example we see that this condition is still not sufficient.

Consider the ideal J ′′ = 〈x2+xy+t, tx+y+t〉 =: 〈k1, k2〉.
The reduced Gröbner bases of the ideals J ′′p + 〈f1,p〉 and
J ′′p + 〈f2,p〉 are {t − 1, x − 1, y − 1} and {t2 + t − 1, x +
yt − y + t + 1, y2 + yt + y + t − 1}, respectively. Although
none of the elements in Sk1 and Sk2 vanishes when reduced
w.r.t. the set {t2 + t − 1, t − 1}, and the sizes of these sets
coincide, we see that applying Algorithm 1 yields {t2 − t +
1, x − 1, y2t2 + y2t − y2 + yt2 + yt + t2 + t + 1} which is
not the desired result because the reduced Gröbner basis of
J ′′p + 〈fp〉 is {t2 + t−1, y+1, x+ t+1}. In practice, however,
it is very unlikely that this case happens. It is, nevertheless,
important to address this problem. A possible way to handle
this difficulty is to refine Definition 5.3 as follows:

Definition 5.4 (Strong version). Let f and H̃ =
{g1(X, t), . . . , gs(X, t)} be as given above. Let p be an a
prime which is admissible of type A w.r.t. f , and write f =
f1,p · · · frp,p as in Definition 5.2. Suppose that p does not
divide any numerator or any denominator of the coefficients

occurring in H̃. For i = 1, . . . , rp, set Ĩi,p := 〈H̃p ∪ {fi,p}〉,
and let G̃i,p be the reduced Gröbner basis of the ideal Ĩi,p.

We say that p is admissible of type B w.r.t. f and H̃ if for
all indices i, j with i 6= j

a) the sizes of G̃i,p and G̃j,p coincide, and

b) Lm(G̃i,p \ {fi,p}) = Lm(G̃j,p \ {fj,p}).

In the above examples, the prime number 3 is not admis-
sible of type B w.r.t. t3 + t + 1 and the generators of each
of the ideals J , J ′ and J ′′ in the sense of Definition 5.4.
This is because in the first two cases, both conditions of this
definition are violated whereas in the third case, the second
condition is not satisfied. For the rest of our discussion we
use the strong version of this definition.

We now turn our attention to the notion of lucky primes:

Definition 5.5 ([10]). Let Ĩ be an ideal given as above

and let p be a prime number. Furthermore, let G̃ be the re-

duced Gröbner basis of Ĩ and let G̃p be the reduced Gröb-

ner basis of Ĩp. Then p is called lucky for Ĩ if and only if

Lm(G̃p) = Lm(G̃). Otherwise p is called unlucky for Ĩ.

Since f is independent of X, we get, by Corollary 4.3, the
isomorphism

Fp[X, t]/〈fp〉 ∼= Fp[X, t]/〈f1,p〉 × . . .× Fp[X, t]/〈frp,p〉 .

Remark 5.6. Let Ĩ, H̃, and f be as above. Let p be a

prime which is both admissible of type B w.r.t. f and H̃ as

well as lucky for Ĩ. We work over Fp[X, t] equipped with the

product ordering �K . Suppose a set of polynomials G̃p is the

reduced Gröbner basis of the ideal Ĩp. For i = 1, . . . , rp, set

Si := (G̃p \ {fp}) mod fi,p ⊆ Fp[X, t]/〈fi,p〉. Then for each
i, the set Si∪{fi,p} is the reduced Gröbner basis of the ideal

Ĩi,p (as in Definition 5.4) with high probability. Conversely,

let G̃i,p be the reduced Gröbner basis of Ĩi,p. Let G̃′p be the
set of polynomials that is obtained by applying Algorithm 1
coefficient-wise to the input(

(G̃1,p \ {f1,p}, . . . , G̃rp,p \ {frp,p}), (f1,p, . . . , frp,p)
)
.

Then the set G̃′p ∪ {fp} is the reduced Gröbner basis of the

ideal Ĩp with high probability. Hence, we have G̃′p∪{fp} = G̃p
with high probability.

The main innovation of our new algorithm, which is illus-
trated in Figure 1, is as follows: Instead of computing the
reduced Gröbner bases at level 1, our algorithm computes
them at level 2. For the primes satisfying the conditions
in Definition 5.4 (and only for those), the Chinese remain-
der algorithm for polynomials then combines these results at

level 3. The ideals 〈G̃pi〉 at this level are expected to be the

same as the ideals Ĩpi at level 1 with high probability (see
Remark 5.6). The remaining parts of the computation are
carried out in the same way as in the modular algorithms
described in [10].

Now we give a brief description of the new algorithm. In
the beginning, randomly choose a set P of prime numbers
which are admissible of type A w.r.t. f . At level 2, given a
prime p ∈ P, factorize f ∈ Q[t] over Fp and compute, for

each i, the reduced Gröbner basis G̃i,p of the ideal Ĩi,p cor-
responding to the i-th factor. If the prime p is admissible

of type B w.r.t. f and H̃, then lift these results via Chinese
remaindering for polynomials (at level 3) to obtain the re-

duced Gröbner basis G̃p of Ĩp with high probability. Repeat
this process for every prime p ∈ P which is admissible of

4

Ĩ

Ĩpk

G̃rpk ,pk· · ·G̃1,pk

· · ·

· · ·

Ĩp2

G̃rp2 ,p2· · ·G̃1,p2

Ĩp1

G̃rp1 ,p1· · ·G̃1,p1

G̃p1 G̃p2 · · · G̃pk

Modular Reconstruction (over Q)

level 2

Input

level 1

level 3

Figure 1: General scheme for the new algorithm

type B, in the same way as in the modular algorithms in
[10].

The main reason why the method to compute Gröbner
bases over algebraic number fields described above is faster
than other known methods, see Section 8, is that factorizing
the minimal polynomial f in positive characteristic allows
us to compute in rings with minimal polynomials of degree
much less than deg f : Experiments have shown that the
performance of Gröbner basis computations over simple al-
gebraic extensions depends heavily on the degree of the min-
imal polynomial. Additionally, the computations are carried
out over finite fields which avoids the problem known as coef-
ficient swell, and we do not directly use the computationally
expensive arithmetic in K. Finally, the new method is a
priori easily parallelizable.

6. MODULAR ALGORITHMS
To compute the reduced Gröbner basis of the ideal Ĩ, the

modular algorithm described in [10] first chooses a set of

primes P and computes the reduced Gröbner bases G̃p of Ĩp
for each p ∈ P. It then uses the Chinese remainder algorithm
and rational reconstruction to obtain the reduced Gröbner
basis G̃ over Q with high probability. Finally, it verifies the
correctness of the result obtained in this way. One of the
problems after computing the set of reduced Gröbner bases

GP := {G̃p | p ∈ P} is that P may contain unlucky primes.
To deal with such unlucky primes, the following method is
used, see [3]:

DeleteUnluckyPrimesSB ([10]): We define an equiva-
lence relation on (GP,P) by

(G̃p, p) ∼ (G̃q, q) :⇐⇒ Lm(G̃p) = Lm(G̃q) .

Then the equivalence class of largest cardinality1 is stored in
(GP,P), the others are deleted.

1Here, we have to use a weighted cardinality count if Algo-
rithm 2 requires more than one round of the loop, see [3,
Remark 5.7].

Now, all G̃p, p ∈ P, have the same set of leading monomi-
als. Hence, we can apply the Chinese remainder algorithm
for integers and the rational reconstruction algorithm to the
coefficients of the Gröbner bases in GP to obtain a reduced
Gröbner basis G̃ of Ĩ with high probability. Since we can-
not check, however, whether P is sufficiently large, a final
verification step is needed. Since this may be expensive,

especially if Ĩ 6= 〈G̃〉, we first perform a test in positive
characteristic:

pTestSB ([10]): We randomly choose a prime p /∈ P
which is admissible of type B w.r.t. f and H̃. We test if in-
cluding this prime in the set P would improve the result.

That is, explicitly test whether Ĩ reduces to zero w.r.t G̃

mapped to Fp[X, t], and vice-versa, whether G̃ mapped to

Fp[X, t] reduces to zero w.r.t. G̃p.
The advantage of this test is that it accelerates the al-

gorithm enormously. Algorithm 2 is a modified version of
Algorithm 1 in [10] (which is implemented in Singular [7]
in the library modstd.lib [9]), in the sense that we do apply
modular methods not only once, but twice, where the sec-
ond application is with respect to the factors of the minimal
polynomial f .

Now, taking Theorem 5.1 into account, we can compute
a Gröbner basis of an ideal in K[X] = Q(α)[X] as in Al-
gorithm 3: We first map α to t and join the minimal poly-
nomial f ∈ Q[t] to the ideal to be considered. Then, after
applying Algorithm 2, we only need to map t back to α to
get a Gröbner basis of the input ideal.

Algorithm 2 is probabilistic in the sense that the test in

lines 17 to 18 does not guarantee that 〈G̃〉 = Ĩ. If I is
homogeneous, however, the result G of Algorithm 3 can be
verified along the lines of [2, Theorem 7.1]. With this test
included, Algorithm 3 is deterministic.

Remark 6.1. Some parts of Algorithm 2 are inherently
parallelizable. In the current implementation, see Section 8,
we could easily take advantage of this thanks to Singular’s
parallel framework. We have, first of all, parallelized the
for-loop starting in line 4. This corresponds to the modu-

5

Algorithm 2 Modified modular Gröbner bases algorithm
over Q
Input: an ideal Ĩ = 〈H̃, f〉 ⊆ T = Q[X, t] where H̃ =
{g1(X, t), . . . , gs(X, t)} and f ∈ Q[t] is irreducible.

Output: G̃ ⊆ T , a Gröbner basis of Ĩ w.r.t. �K .
1: choose P, a set of random primes which are admissible

of type A w.r.t. f
2: GP ←− {}
3: loop
4: for p ∈ P do
5: factorize fp ∈ Fp[t] into irreducible factors fp =∏

1≤i≤rp fi,p
6: for i = 1, . . . , rp do

7: Ĩi,p ←− 〈H̃p ∪ {fi,p}〉 ⊆ Fp[X, t]
8: compute the reduced Gröbner basis G̃i,p of Ĩi,p

w.r.t. �K
9: if p is admissible of type B w.r.t. f and H̃ over Fp

then
10: apply Algorithm 1 coefficient-wise to the input((

G̃1,p \ {f1,p}, . . . , G̃rp,p \ {frp,p}
)
,
(
f1,p, . . . ,

frp,p
))

to obtain a set of polynomials G̃p ⊆
Fp[X, t]

11: G̃p ←− G̃p ∪ {fp}
12: else
13: G̃p ←− 0

14: GP ←− GP ∪ {G̃p}
15: (GP,P)←− DeleteUnluckyPrimesSB(GP,P)

16: lift (GP,P) to G̃ ⊆ T by applying the Chinese re-
mainder algorithm and the Farey rational map

17: if pTestSB(Ĩ , G̃,P) then

18: if Ĩ reduces to zero w.r.t. G̃ then
19: if G̃ is the reduced Gröbner basis of 〈G̃〉 then
20: return G̃
21: enlarge P

lar computations on level 1, see Figure 1. Besides this, we
also make use of parallelization for the selection of primes
in line 1, for the application of the Farey rational map in
line 16, and for the final test in line 19. The for-loop starting
in line 6, which corresponds to the modular computations on
level 2, is inherently parallelizable as well, but experiments
have shown that a parallel implementation of this step does
not yield any further speedup for our test cases.

7. EXAMPLE
The following example illustrates how the new algorithm

works:
Consider the ideal I = 〈x2 + ay, axy− x+ a〉 ⊂ Q(a)[x, y]

where a is a zero of the polynomial f = t2 + 1 ∈ Q[t].
A Singular computation shows that the reduced Gröbner
basis of I with respect to the degree reverse lexicographical
ordering (dp in Singular) with x � y is

{y2 + ax+ ay, xy + ax+ 1, x2 + ay} .

In the following, we show how this basis is obtained using
our method: At level 1, let us choose k = 2 with p1 = 5 and
p2 = 13. At level 2, we have fp1 ≡ (t−2)(t+2) mod p1 and
fp2 ≡ (t − 5)(t + 5) mod p2. Now, corresponding to each

Algorithm 3 Modular Gröbner basis algorithm over K =
Q(α) (nfmodStd)

Input: I = 〈g1(X,α), . . . , gs(X,α)〉 ⊆ S = K[X].
Output: G ⊆ S, a Gröbner basis of I w.r.t. �1.

1: map I to 〈H̃〉 via the map sending α to t

2: Ĩ ←− 〈H̃〉+ 〈f〉
3: call Algorithm 2 to compute the reduced Gröbner basis

G̃ of Ĩ w.r.t. �K= (�1,�)

4: lift G̃ to G via the map sending t to α
5: return G

factor, we compute, using Singular, the reduced Gröbner
bases of the following ideals:

Ĩ1,p1 = 〈x2 + ty, txy − x+ t, t− 2〉 ,

Ĩ2,p1 = 〈x2 + ty, txy − x+ t, t+ 2〉 ,

Ĩ1,p2 = 〈x2 + ty, txy − x+ t, t− 5〉 ,

Ĩ2,p2 = 〈x2 + ty, txy − x+ t, t+ 5〉 .

> ring r = 5, (x,y,t), (dp(2),dp(1));

> ideal I1p1 = x2+ty, txy-x+t, t-2;

> ideal I2p1 = x2+ty, txy-x+t, t+2;

> option(redSB);

> ideal S1 = std(I1p1);

> S1;

S1[1]=t-2

S1[2]=y2+2x+2y

S1[3]=xy+2x+1

S1[4]=x2+2y

> ideal S2 = std(I2p1);

> S2;

S2[1]=t+2

S2[2]=y2-2x-2y

S2[3]=xy-2x+1

S2[4]=x2-2y

The Chinese remainder algorithm for polynomials com-
bines these results at level 3 to obtain the reduced Gröbner
basis of Ĩp1 with high probability, as follows:

> list l = S1, S2;

> list m = t-2, t+2;

// CRA for polynomials (coefficient-wise):

> ideal G1p1 = chinrempoly(l, m);

> Gp1;

Gp1[1]=t2+1

Gp1[2]=y2+xt+yt

Gp1[3]=xy+xt+1

Gp1[4]=x2+yt

Similarly, the reduced Gröbner basis of Ĩp2 , with high
probability, is

> Gp2;

Gp2[1]=t2+1

Gp2[2]=y2+xt+yt

Gp2[3]=xy+xt+1

Gp2[4]=x2+yt

It is not hard to see that the primes p1 and p2 are ad-

missible of type B w.r.t. f and H̃ = {x2 + ty, txy − x + t}.
Furthermore, it is also clear that they are lucky primes for

6

Ĩ = 〈H̃, f〉. At this point we have to change the current
base ring in Singular to characteristic zero in order to ap-
ply the Chinese remainder algorithm for integers and to pull
the modular coefficients back to the rational numbers.

/* Chinese remaindering for integers */

> ring s = 0, (x,y,t), (dp(2),dp(1));

> list l = imap(r, Gp1), imap(r, Gp2);

> intvec m = 5, 13;

> ideal j = chinrem(l, m);

> j;

j[1]=t2+1

j[2]=y2+xt+yt

j[3]=xy+xt+1

j[4]=x2+yt

/* rational reconstruction */

> j = farey(j, 5*13);

> j;

j[1]=t2+1

j[2]=y2+xt+yt

j[3]=xy+xt+1

j[4]=x2+yt

Note that the computed result already coincides with the
reduced Gröbner basis stated above. To simplify the presen-
tation, we therefore skip some of the steps in Algorithm 2,
such as the final test. However, we have to map the result
back to the ring Q(a)[x, y] in Singular:

> ring sr = (0,a), (x,y,t), (dp(2),dp(1));

> minpoly = a2+1;

> ideal G = imap(s, j);

> G = subst(G, t, a);

> G = simplify(G, 2); // erase the zero entries

> G; // G is the reduced Groebner basis of I

G[1]=y2+ax+ay

G[2]=xy+ax+1

G[3]=x2+ay

Thus we get the same result as the one we mentioned at the
beginning.

8. IMPLEMENTATION AND TIMINGS
We implemented Algorithm 3 in Singular in the library

nfmodstd.lib [4] and compared its performance against the
implementation of [10, Algorithm 1] in the Singular library
modstd.lib (the command is modStd), the Singular com-
mand std, and the Magma [5, 12] command GroebnerBasis.
For modStd, we added the minimal polynomial f to the
given input ideal I (considered as an ideal in a polyno-
mial ring over a polynomial ring) and computed the reduced

Gröbner basis of the ideal Ĩ = 〈H̃〉 + 〈f〉 w.r.t. �K . For
GroebnerBasis and std, we computed the reduced Gröbner
basis of the ideal I over an algebraic number field with the
minimal polynomial f . Note that the implementation of our
algorithm is internally linked with the existing implementa-
tion of Algorithm 1 in [10].

We have nine benchmark problems to demonstrate the
superiority of our new algorithm (see appendix). The cyclic
ideal Cn in n variables has become a benchmark problem
for Gröbner basis techniques. For our algorithm, we have
replaced the coefficients of this ideal by a random element
in Q(a) where a is an algebraic number (see, for example, the
ideal I6 in the appendix). Some of the benchmark problems

are chosen from [2, 11] (the ideals I1 and I2 are from [2],
I6 and I7 are from [11]) where the coefficients are replaced
by a random algebraic number. The minimal polynomials,
selected for our computations, are:

m1 = a2 + 1 ,

m2 = a5 + a2 + 2 ,

m3 = a7 − 7a+ 3 ,

m4 = a6 + a5 + a4 + a3 + a2 + a+ 1 ,

m5 = a12 − 5a11 + 24a10 − 115a9 + 551a8 − 2640a7

+ 12649a6 − 2640a5 + 551a4 − 115a3 + 24a2 − 5a+ 1 ,

m6 = a2 + 5a+ 1 ,

m7 = a8 − 16a7 + 19a6 − a5 − 5a4 + 13a3 − 9a2 + 13a

+ 17 , and

m8 = a7 + 10a5 + 5a3 + 10a+ 1 .

With respect to these minimal polynomials, timings are
conducted by using Singular 4.0.2 and Magma V2.21-2 on
a Dell PowerEdge R720 machine with two Intel Xeon E5-
2690 CPUs, 16 cores and 32 threads in total, 2.9-3.8 GHz,
and 192 GB of RAM running the Gentoo Linux operating
system.

The results are summarized in Table 1. Some of the com-
putations in Magma did not finish within 12 hours. This is
indicated by a dash (-). Note that in all those cases, the
computation also occupied an excessive amount of memory,
more than 100 GB at the point when we interrupted it. All
timings are in seconds. We use the degree reverse lexico-
graphical ordering (dp in Singular) for all examples.

In our implementation, the number of primes which are
chosen in line 1 of Algorithm 2 depends on the number of
cores. For our timings, we started with 10 primes on one core
and 25 primes on 32 cores. The runtime depends heavily on
the splitting behaviour of the minimal polynomial modulo
the chosen primes. Finding the optimal strategy for this is
still under active research.

Remark 8.1. We understand that Magma has no paral-
lel version of the Gröbner basis algorithm which works over
algebraic number fields. Therefore we have conducted the
timings in Magma using one core only.

From Table 1, we see that the Singular commands std

and modStd perform well in comparison to the Magma com-
mand GroebnerBasis. However, one can see that our algo-
rithm nfmodStd is even much faster.

9. ACKNOWLEDGMENTS
We would like to thank Gerhard Pfister for many fruitful

discussions.

7

Example Magma Singular

Ideal
Minimal

deg(mi)
Groebner

std
modStd nfmodStd

Polynomial Basis one core 32 cores one core 32 cores

I1 m1 2 1241.98 1.51 1.24 0.37 0.22 0.13
I2 m2 5 error 70.55 19.59 4.79 1.89 0.61
I3a m3 7 - 0.90 143.79 9.34 3.27 0.51
I3b m3 7 - 314.00 11212.00 1118.78 97.43 19.23
I4 m4 6 - 265.53 9163.38 567.03 686.01 99.41
I5 m5 12 - 2061.95 3321.28 256.58 430.23 71.47
I6 m6 2 2.93 8931.13 197.20 47.54 24.26 8.99
I7 m7 8 - 0.90 2044.08 195.41 8.54 1.87
I8 m8 7 - 15477.87 15274.97 4787.49 92.99 23.89

Table 1: Total running times in seconds for computing a Gröbner basis of the considered ideals with the
corresponding minimal polynomial via GroebnerBasis, std, modStd and nfmodStd

10. REFERENCES
[1] W. W. Adams and P. Loustaunau. An introduction to

Gröbner bases. American Mathematical Society, 1994.

[2] E. A. Arnold. Modular algorithms for computing
Gröbner bases. J. Symb. Comput., 35(4):403–419,
2003.

[3] J. Böhm, W. Decker, C. Fieker, and G. Pfister. The
use of bad primes in rational reconstruction. To
appear in Math. Comp., 2015.
http://arxiv.org/abs/1207.1651.

[4] D. K. Boku, W. Decker, and C. Fieker. nfmodstd.lib.
A Singular 4-0-2 library for computing Gröbner
bases of ideals in polynomial rings over algebraic
number fields, 2015. Included in Singular 4-0-2 as
algemodstd.lib and renamed to nfmodstd.lib for
subsequent releases.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma
algebra system. I. The user language. J. Symb.
Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[6] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and
algorithms. An introduction to computational algebraic
geometry and commutative algebra. Springer, New
York, third edition, 2007.

[7] W. Decker, G.-M. Greuel, G. Pfister, and
H. Schönemann. Singular 4-0-2 – A computer
algebra system for polynomial computations, 2015.
http://www.singular.uni-kl.de.

[8] G.-M. Greuel and G. Pfister. A Singular introduction
to commutative algebra. With contributions by Olaf
Bachmann, Christoph Lossen and Hans Schönemann.
Springer, Berlin, second extended edition, 2007.

[9] A. Hashemi, G. Pfister, H. Schönemann, A. Steenpass,
and S. Steidel. modstd.lib. A Singular 4-0-2 library
for computing Gröbner bases of ideals using modular
methods, 2014.

[10] N. Idrees, G. Pfister, and S. Steidel. Parallelization of
modular algorithms. J. Symb. Comput.,
46(6):672–684, 2011.

[11] M. Noro. An efficient implementation for computing
Gröbner bases over algebraic number fields. In
Mathematical software – ICMS 2006. Second
international congress on mathematical software,
Castro Urdiales, Spain, September 1–3, 2006.
Proceedings, pages 99–109. Springer, 2006.

[12] The Magma Group. The Magma Computational
Algebra System V2.21-2, 2015.
http://magma.maths.usyd.edu.au.

[13] C. Traverso. Gröbner trace algorithms. In P. Gianni,
editor, Symbolic and Algebraic Computation, volume
358 of Lecture Notes in Computer Science, pages
125–138. Springer, 1989.

[14] J. von zur Gathen and J. Gerhard. Modern computer
algebra. Cambridge University Press, Cambridge, third
edition, 2013.

8

http://arxiv.org/abs/1207.1651
http://www.singular.uni-kl.de
http://magma.maths.usyd.edu.au

APPENDIX
The following are the benchmark problems used to demon-
strate the efficiency of Algorithm 3. They are available in
the source code of the Singular library nfmodstd.lib [4].

1. ring R = (0,a), (x,y,z), dp;

minpoly = (a^2+1);

poly f1 = (a+8)*x^2*y^2+5*x*y^3+(-a+3)*x^3*z

+x^2*y*z;

poly f2 = x^5+2*y^3*z^2+13*y^2*z^3+5*y*z^4;

poly f3 = 8*x^3+(a+12)*y^3+x*z^2+3;

poly f4 = (-a+7)*x^2*y^4+y^3*z^3+18*y^3*z^2;

ideal I1 = f1,f2,f3,f4;

2. ring R = (0,a), (x,y,z), dp;

minpoly = (a^5+a^2+2);

poly f1 = 2*x*y^4*z^2+(a-1)*x^2*y^3*z

+(2*a)*x*y*z^2+7*y^3+(7*a+1);

poly f2 = 2*x^2*y^4*z+(a)*x^2*y*z^2-x*y^2*z^2

+(2*a+3)*x^2*y*z-12*x+(12*a)*y;

poly f3 = (2*a)*y^5*z+x^2*y^2*z-x*y^3*z

+(-a)*x*y^3+y^4+2*y^2*z;

poly f4 = (3*a)*x*y^4*z^3+(a+1)*x^2*y^2*z

-x*y^3*z+4*y^3*z^2+(3*a)*x*y*z^3

+4*z^2-x+(a)*y;

ideal I2 = f1,f2,f3,f4;

3. ring R = (0,a), (v,w,x,y,z), dp;

minpoly = (a^7-7*a+3);

poly f1 = (a)*v+(a-1)*w+x+(a+2)*y+z;

poly f2 = v*w+(a-1)*w*x+(a+2)*v*y+x*y+(a)*y*z;

poly f3 = (a)*v*w*x+(a+5)*w*x*y+(a)*v*w*z

+(a+2)*v*y*z+(a)*x*y*z;

poly f4 = (a-11)*v*w*x*y+(a+5)*v*w*x*z

+(a)*v*w*y*z+(a)*v*x*y*z

+(a)*w*x*y*z;

poly f5 = (a+3)*v*w*x*y*z+(a+23);

ideal I3a = f1,f2,f3,f4,f5;

4. ring R = (0,a), (u,v,w,x,y,z), dp;

minpoly = (a^7-7*a+3);

poly f1 = (a)*u+(a+2)*v+w+x+y+z;

poly f2 = u*v+v*w+w*x+x*y+(a+3)*u*z+y*z;

poly f3 = u*v*w+v*w*x+(a+1)*w*x*y+u*v*z+u*y*z

+x*y*z;

poly f4 = (a-1)*u*v*w*x+v*w*x*y+u*v*w*z

+u*v*y*z+u*x*y*z+w*x*y*z;

poly f5 = u*v*w*x*y+(a+1)*u*v*w*x*z+u*v*w*y*z

+u*v*x*y*z+u*w*x*y*z+v*w*x*y*z;

poly f6 = u*v*w*x*y*z+(-a+2);

ideal I3b = f1,f2,f3,f4,f5,f6;

5. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^6+a^5+a^4+a^3+a^2+a+1);

poly f1 = (a+5)*w^3*x^2*y+(a-3)*w^2*x^3*y

+(a+7)*w*x^2*y^2;

poly f2 = (a)*w^5+(a+3)*w*x^2*y^2

+(a^2+11)*x^2*y^2*z;

poly f3 = (a+7)*w^3+12*x^3+4*w*x*y+(a)*z^3;

poly f4 = 3*w^3+(a-4)*x^3+x*y^2;

ideal I4 = f1,f2,f3,f4;

6. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^12-5*a^11+24*a^10-115*a^9+551*a^8

-2640*a^7+12649*a^6-2640*a^5+551*a^4

-115*a^3+24*a^2-5*a+1);

poly f1 = (2*a+3)*w*x^4*y^2+(a+1)*w^2*x^3*y*z

+2*w*x*y^2*z^3+(7*a-1)*x^3*z^4;

poly f2 = 2*w^2*x^4*y+w^2*x*y^2*z^2

+(-a)*w*x^2*y^2*z^2

+(a+11)*w^2*x*y*z^3-12*w*z^6

+12*x*z^6;

poly f3 = 2*x^5*y+w^2*x^2*y*z-w*x^3*y*z

-w*x^3*z^2+(a)*x^4*z^2+2*x^2*y*z^3;

poly f4 = 3*w*x^4*y^3+w^2*x^2*y*z^3

-w*x^3*y*z^3+(a+4)*x^3*y^2*z^3

+3*w*x*y^3*z^3+(4*a)*y^2*z^6-w*z^7

+x*z^7;

ideal I5 = f1,f2,f3,f4;

7. ring R = (0,a), (u,v,w,x,y,z), dp;

minpoly = (a^2+5*a+1);

poly f1 = u+v+w+x+y+z+(a);

poly f2 = u*v+v*w+w*x+x*y+y*z+(a)*u+(a)*z;

poly f3 = u*v*w+v*w*x+w*x*y+x*y*z+(a)*u*v

+(a)*u*z+(a)*y*z;

poly f4 = u*v*w*x+v*w*x*y+w*x*y*z+(a)*u*v*w

+(a)*u*v*z+(a)*u*y*z+(a)*x*y*z;

poly f5 = u*v*w*x*y+v*w*x*y*z+(a)*u*v*w*x

+(a)*u*v*w*z+(a)*u*v*y*z+(a)*u*x*y*z

+(a)*w*x*y*z;

poly f6 = u*v*w*x*y*z+(a)*u*v*w*x*y

+(a)*u*v*w*x*z+(a)*u*v*w*y*z

+(a)*u*v*x*y*z+(a)*u*w*x*y*z

+(a)*v*w*x*y*z;

poly f7 = (a)*u*v*w*x*y*z-1;

ideal I6 = f1,f2,f3,f4,f5,f6,f7;

8. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^8-16*a^7+19*a^6-a^5-5*a^4+13*a^3

-9*a^2+13*a+17);

poly f1 = (-a^2-1)*x^2*y+2*w*x*z-2*w

+(a^2+1)*y;

poly f2 = (a^3-a-3)*w^3*y+4*w*x^2*y+4*w^2*x*z

+2*x^3*z+(a)*w^2-10*x^2+4*w*y-10*x*z

+(2*a^2+a);

poly f3 = (a^2+a+11)*x*y*z+w*z^2-w-2*y;

poly f4 = -w*y^3+4*x*y^2*z+4*w*y*z^2+2*x*z^3

+(2*a^3+a^2)*w*y+4*y^2-10*x*z-10*z^2

+(3*a^2+5);

ideal I7 = f1,f2,f3,f4;

9. ring R = (0,a), (t,u,v,w,x,y,z), dp;

minpoly = (a^7+10*a^5+5*a^3+10*a+1);

poly f1 = v*x+w*y-x*z-w-y;

poly f2 = v*w-u*x+x*y-w*z+v+x+z;

poly f3 = t*w-w^2+x^2-t;

poly f4 = (-a)*v^2-u*y+y^2-v*z-z^2+u;

poly f5 = t*v+v*w+(-a^2-a-5)*x*y-t*z+w*z+v+x+z

+(a+1);

poly f6 = t*u+u*w+(-a-11)*v*x-t*y+w*y-x*z-t-u

+w+y;

poly f7 = w^2*y^3-w*x*y^3+x^2*y^3+w^2*y^2*z

-w*x*y^2*z+x^2*y^2*z+w^2*y*z^2

-w*x*y*z^2+x^2*y*z^2+w^2*z^3-w*x*z^3

+x^2*z^3;

poly f8 = t^2*u^3+t^2*u^2*v+t^2*u*v^2+t^2*v^3

-t*u^3*x-t*u^2*v*x-t*u*v^2*x-t*v^3*x

+u^3*x^2+u^2*v*x^2+u*v^2*x^2

+v^3*x^2;

ideal I8 = f1,f2,f3,f4,f5,f6,f7,f8;

9

	Introduction
	Notation
	Structure of the New Method
	Factorization and the Chinese Remainder Algorithm
	Gröbner Bases using Factorization and Modular Methods
	Modular Algorithms
	Example
	Implementation and Timings
	Acknowledgments
	References

