Computer Algebra Exercise 1
due on Nov 21, 2017, 8:30 AM

1. (a) Implement the Euclidean Algorithm for computing the greatest common divisor in \mathbb{Z}. Test your implementation at examples.
(b) Use your implementation to cancel

$$
\frac{90189116021}{18189250063} .
$$

2. Let p be a prime and $\mathbb{F}_{p}=\mathbb{Z} / p$ the field with p elements.
(a) Use an analogue of the sieve of Eratosthenes to find all irreducible polynomials in $\mathbb{F}_{2}[x]$ of degree ≤ 3.
(b) Factor $x^{5}+x^{2}+x+1 \in \mathbb{F}_{2}[x]$ into a product of irreducible polynomials.
(c) Determine all elements of $K=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$, the addition table of K, and the multiplication table of K. Prove that K is a field.
3. Write a procedure to compute

$$
\pi(x)=\mid\{p \leq x \mid p \in \mathbb{N} \text { prime }\} \mid
$$

for $x>0$.
4. Write a procedure to compute n ! for any $n \in \mathbb{Z}_{\geq 1}$.
5. Write a procedure which returns an n-th Fibonacci number.

Note: Write your procedure in Singular.

