DILLA UNIVERSITY DEPARTMENT OF MATHEMATICS

Computer Algebra Exercise 1 due on Nov 21, 2017, 8:30 AM

- (a) Implement the Euclidean Algorithm for computing the greatest common divisor in Z. Test your implementation at examples.
 - (b) Use your implementation to cancel

$\frac{90189116021}{18189250063}$

- 2. Let *p* be a prime and $\mathbb{F}_p = \mathbb{Z}/p$ the field with *p* elements.
 - (a) Use an analogue of the sieve of Eratosthenes to find all irreducible polynomials in $\mathbb{F}_2[x]$ of degree ≤ 3 .
 - (b) Factor $x^5 + x^2 + x + 1 \in \mathbb{F}_2[x]$ into a product of irreducible polynomials.
 - (c) Determine all elements of $K = \mathbb{F}_2[x]/(x^2 + x + 1)$, the addition table of *K*, and the multiplication table of *K*. Prove that *K* is a field.
- 3. Write a procedure to compute

$$\pi(x) = |\{p \le x \mid p \in \mathbb{N} \text{ prime }\}|$$

for x > 0.

- 4. Write a procedure to compute *n*! for any $n \in \mathbb{Z}_{\geq 1}$.
- 5. Write a procedure which returns an n-th Fibonacci number.

Note: Write your procedure in Singular.