2

Ideals, Varieties and
Standard Bases

2.1 Ideals and Varieties

We begin with an easy, but important, observation about the alge-
braic set V(f1,...,fs) with fie R=K[xq,...,2,]:

If f1(p)=0,...,fs(p) =0 for pe A*(K), then also any R-linear
combination of the f; vanishes on p, that is,

(Zn-fi) (p) =2 ri(p) fi(p) =0

i=1 i=1

for all r; € R. Hence, V (f1,..., fs) depends only on the ideal
(fi,-.., fs) =AXiarifi|ri e R} c R,

generated by fi,..., fs. Recall:

Definition 2.1.1 Let R be a commutative ring with 1. An ideal
15 a non-empty subset I ¢ R with

a+bel

rael

for all a,be I and r € R.
If S c R then

(S) = {Zﬁniterifi |7 €R, f; € S}

is the ideal generated by S.

29
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Figure 2.1: Elliptical arc

Recall, that the definition of an ideal is motivated in algebra
by the following: For a subgroup I ¢ R the additive group R/I
becomes a ring with multiplication induced by that of R if and
only if I is an ideal (prove this as an easy exercise).

By the above observation it is natural to consider, instead of

the vanishing locus of a set of equations, the vanishing locus of an
ideal:

Definition 2.1.2 If I c K [xy,...,2,] then
V) ={peK"[f(p)=0Vfel}
is called the vanishing locus of I.

This is indeed an affine variety, because any ideal I c k[x1,...,x,]
is finitely generated, as we will prove in Theorem 2.1.7.

Definition 2.1.3 Let S c A*(K) be a subset. Then
1(S)={feK[z1,...,zs]| f(p) =0 Vpe S}
is (as we have seen above) an ideal, the vanishing ideal of S.
Example 2.1.4 Consider the elliptical arc
S ={(z1,22) e A"(R) | 23 + 223 = 1 and z1,25 > 0}
shown in black in Figure 2.1. We have
1(S) = (a3 +223 - 1)

hence V(I(S)) is the complete ellipse, the smallest algebraic set
containing S. This is the closure

S=V(I(9))
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of S in the so called Zariski topology:

The Zariski topology on A"(K) has as closed sets the V(1)
forideals I c K [x1,...,2,]. See also Exercise 2.2, which you need
to show that this indeed gives a topology.

By I and V inclusion reversing maps
I
{affine algebraic sets X c A"(K)} e {ideals in K[z1,...,2,]}

between the set of algebraic subsets of A?(K') and the set of ideals
of K[x1,...,x,] are given. It remains to show that any ideal I c
K[x1,...,x,] is finitely generated, that is, there are finitely many
fi,- o fse Rwith I =(f1,..., fs). We begin with a characterization
of these ideals:

Theorem 2.1.5 Let R be a commutative ring with 1. The follow-
ing conditions are equivalent:

1) Every ideal I c R is finitely generated .
2) Every ascending chain
ILiclyclyc..cl,c...
of ideals terminates, that is, there is an m, such that

Im =dm+1 = Im+2 =

3) Every non-empty set of ideals has a mazimal element with
respect to inclusion.

If R satisfies these conditions, then R is called Noetherian.

These rings are called Noetherian after Emmy Noether (1882-
1935), who has formulated the general structure theory for this class
of rings and used this to give a simpler and more general proof of
the theorems of Kronecker and Lasker.

Proof. (1) = (2): Let I; c I c ... be a chain of ideals. Then

is also an ideal: If a,b € I, then there are ji,j, € N with a € I},
bel; , and

j27
a+be ]mﬂx(jhjz) cl
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By (1) the ideal [ is finitely generated, hence there are ay,...,as € [
with I =(f1,..., fs). For every fi there is a j, with f; € I;,. For

m:=max{jy | k=1,...,s}
we have f1,..., fs €I, so

I:(fl;"'ufS)CImCIerIC---CI

and hence
Iy =T = ...

(2) = (3): Assume that (3) does not hold. Then there is a set
M of ideals, such that for every I € M thereis an I" € M with I & I’
strictly contained. Hence, by induction, we obtain a sequence

LELGIsG ..

of ideals in M, which does not terminate, that is, (2) is not satisfied.
(3) = (1): Let I be an arbitrary ideal. The set

M ={I'c I'| I’ finitely generated}

is non-empty, for example, (0) € M. Let J be a maximal element of
M. So there are f1,...,fs € J with J = (f1,..., fs). We show that
I = J: If this is not true, then there is an f € I'\J with

JE(fr, o fs. f) el

This contradicts the maximality of J. m

Example 2.1.6 1) The ring of integers Z is Noetherian, since
all ideals of Z are of the form

(n)=nZ={nk|keZ}

and, hence, are finitely generated (by a single element). See
Exercise 2.1.

2) A field K only has the ideals (0) and K = (1), in particular,
K is Noetherian.

3) If R is Noetherian and I ¢ R an ideal, then the quotient ring
R/I is Noetherian:

Let m : R — R/I be the canonical epimorphism. If J c R[I
an ideal then by assumption 7= 1(J) = (f1,..., fs), and J =

(W(f1)> te >f(fs)>
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4) The polynomial ring K[x1,xs,...] in infinitely many variables
is not Noetherian. Also the ring

R={feQ[X]|f(0)cZ}

of polynomials in Q[ X | with integer values at 0 is not Noethe-
rian. See Fxercise 2.).

Hilbert has shown in 1890, that the polynomial ring K [y, ...2,,]
over a field K is Noetherian:

Theorem 2.1.7 (Hilbert’s basis theorem) If R is a Noetherian
ring, then also R[z] is Noetherian.

Using that a field K and the ring of integers Z are Noetherian,
by induction on the number n of variables

Rlxy,...,xn] = R[x1, ...,z 1] [20]
we obtain:

Corollar 2.1.8 Let K be a field. Then the polynomial rings K [x1, ...z, ]
and Z [x1, ...z, ] in n variables are Noetherian.

The fact that K [x1, ...z, ]is Noetherian, is the basis of all algo-
rithms, we will discuss.

For the proof of Theorem 2.1.7 we consider the lead coefficients
in R of polynomials in R[z]. If

k

f=apx” + ...+ aix+ag € R[r]

with a; # 0 then the degree of f is deg(f) = k, its lead coeffi-
cient is LC (f) = ag, its lead term LT (f) = axz*, and its lead
monomial L (f) = z*.

Proof. Assume R[z] is not Noetherian. Then there is an ideal
I ¢ R[x] which is not finitely generated. Let f; € I with deg(f;)
minimal, fy € I\ (f1) mit deg (f2) minimal, and inductively

fk EI\(fl?"'?fk—l)
with deg (f) minimal. Then

deg (f1) <deg(f2) <...<deg(fi) < ...

and we obtain an ascending chain of ideals in R

(LC(f1))  (LC(f1), LC (fa)) € oo € (LC(f1) ., LC (fi)) € .
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We show that the inclusions are strict (and hence R is not Noethe-
rian): Assume

<Lc(f1)77LC(fk:)> = (Lc(fl)vaC(flﬁl))

Then we can write
k
LC (fre1) = Y, b; LC(f5)
j=1
with b; € R. Hence

k
g = Z b; - rdee(fre1)-deg(f5) . fi
=

E(fl,...7fk>

has the same lead term as fr,1, so

deg (g — frer) < deg (frs1),

a contradiction, since fj,1 was chosen to have minimal degree. m

So any algebraic set can be represented by an ideal, and any
ideal gives an algebraic set. However, the V-map is not injective,
for example,

V(z) = V(x?) c AY(K).

There are two ways to remedy this situation. One possibility is
to generalize our notation of an algebraic set: Given I ¢ R =
K|[x1,...,2z,] we replace V(I) by the spectrum

Spec(R/I)={P c R/I| P prime ideal}

and consider R/I as the ring of function on Spec(R/I). Together
with the Zariski topology we obtain a generalization of an alge-
braic set, called a scheme. An easier approach is to restrict the
class of ideals in consideration. To determine that class of ideals, it
is, astonishingly, enough to find out, under which conditions an al-
gebraic set is empty. This is characterized by the following theorem
of Hilbert (which we cannot prove here):

Theorem 2.1.9 (Weak Nullstellensatz) Let K be an algebraically
closed field and I ¢ K[xy,...,x,] an ideal. Then

VID=g <= 1=K[x1,...,1,]

Remark 2.1.10 The condition, that K s algebraically closed, is
necessary. For example, V(22 +y? + 1) c A2(R) is empty (it is not
empty over C).
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From Theorem 2.1.9 we obtain:

Theorem 2.1.11 (Strong Nullstellensatz) Let K be an alge-
braically closed field and I ¢ K[x1,...,x,] an ideal. Then

I(V(I))=VTI.

where
VI={feK[z1,... ,]|3aeN with f*I}

denotes the radical of I.

Proof. According to the basis theorem, write I = (f1,..., fs). For
felI(V(I)) consider

J={I, y-f-1)c K[x1,...,2n,y]

Since f vanishes at any common zero of fi,..., fs, and, hence, y -
f -1 does not, we have V(J) = @. So by Theorem 2.1.9 J =
K(x1,...,x,,y], that is, there are ¢;,d € K[x1,...,z,,y] with

l=ci-fit.tes fo+d-(y-f-1).

Substituting y = % makes the coefficients to ¢;(x1,..., Ty, %) So

multiplying with a sufficiently high power a of f cancels the de-
nominators and yields f® € I.
The other inclusion is easy. m

Definition 2.1.12 An ideal I ¢ K[x1,...,2,] is called a radical
ideal, if I = /1.

Theorem 2.1.11 shows that, if K is algebraically closed,
I
{affine algebraic sets X c A"(K)} e {radical ideals in K[xy,...,z,]}

is a one-to-one correspondence. In Exercise 2.3 we will prove, that
an algebraic set X = V/(I) is irreducible, if and only if I(V (1)) is
prime. This is true over any field K. If K is algebraically closed,
then, by the strong Nullstellensatz, V(1) is irreducible iff I(V (1)) =
VT is prime. In particular, if I is prime then V(1) is irreducible.
Note that this is not true in general if K is not algebraically closed.
So for K algebraically closed we obtain a one-to-one correspondence
of varieties (irreducible algebraic sets) and prime ideals:

I
{affine varieties X c A"(K)} e {prime ideals in K[z1,...,2,]}
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If K is algebraically closed, the points correspond to the maximal
ideals, that is, we have a one—to-one correspondence

Kn

(r—ai,...,z—a,) (ar,...,a,)

{maximal ideals of K[x1,...,2,]}

~N =

Recall, that an ideal P & R of a commutative ring R with 1 is
called prime ideal, if Va,b e R it holds

a-be P=—=aePorbelP.
The ideal P is called maximal ideal, if for all ideals I c R it holds
Pcl§R=—=P-=1.

Recall also the following, standard and easy to prove, characteriza-
tion of prime and maximal ideals:

Theorem 2.1.13 Let R be a commutative ring with 1 and I & R
an tdeal. Then it holds:

1) I prime <= R/I is an integral domain.

2) I mazimal <= R|I is a field.

Example 2.1.14 1) The ideal (x3) c K[x1,22] is a prime ideal,
because

K[x1,25]/ (22) = K[1]

is an integral domain. On the other hand, (xy-x3) is not a
prime ideal, since

x_l-ac_g:GeK[xl,xQ]/[

and 71,73 # 0. Geometrically, the prime ideals (x1) and {x;)
correspond to the coordinate axes and (xy-xs) to their union

V(zy-xz2) =V (x1)uV(xs)

2) The ideal (xg —a3) ¢ K [x1,22] is a prime ideal, since

K[z, 20] [z —27) - K[t]
r1 = t
Ty t2

is an isomorphism and K[t] is an integral domain.
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Figure 2.2: Reducible affine algebraic set

The ideal
I ={(w2-a1) (21 - 23))

s not prime, and
V() =V (xy-2?)uV(x -123),
see Figure 2.2.

In fact, any radical ideal can be written as an intersection of
prime ideals, more generally, any ideal as an intersection of, so
called, primary ideals. We will discuss in detail an algorithm which
computes this primary decomposition.

Example 2.1.15 The ideal (x1,22) ¢ K[x1,x2] is a mazimal ideal,
since K[xy, 2]/ (21, 22) 2 K is a field.

See also the Exercises 2.5 and 2.6.

So the bottom line is: Any geometric problem concerning affine
algebraic sets, can be translated into a problem concerning ideals
in polynomial rings.

2.2 Introduction to the Ideal Member-
ship Problem and Grobner Bases

Suppose we want to obtain information about a variety V(I) c
A"(K) specified by an ideal I = (fi,..., fs) ¢ K[z1,...,2,] which
again is given by generators fi,..., fs € K[z1,...,2,]. For exam-
ple, we may want to determine, whether V' (I) is contained in the
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hypersurface V(f). Equivalently, we have to determine whether
f e {f1,.--,fs). This question is called the ideal membership
problem and appears as a fundamental buildung block in many
more advanced algorithms.

Example 2.2.1 Consider the twisted cubic curve C =V (1) defined
by I =(y—22, z—1x3), see Figure 2.3. By definition, C' is contained

Figure 2.3: Twisted cubic

in the hypersurfaces V(y —x2) and V(z — x®). However, is it also
contained in the hypersurface V(z — xy)? Figure 2./suggests yes,

Figure 2.4: Surface containing the twisted cubic
and we easily find a representation
z—zy=(-2) (y-2?)+1-(2-2%).

How to find such a representation in a systematic way?
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Before solving the ideal membership problem in general, let us
first discuss two special settings, the linear and the univariate case.

Example 2.2.2 Let fi,..., fs,f € K[x1,...,2,] be linear. Then
testing f el ={(f1,...,[fs) is easy and can be done in the following
two steps:

1) Apply Algorithm 1.5.1 to obtain linear equations gi,. .., g, in
row echelon form, so L(gy) > ... > L(g,).

2) Fori=1,...,r do

If L(f) = L(g:) then

_ IO
F=1-1eg)9

If f =0 then return true else return false.

As a second special case, consider higher degree equations in a
single variable. The polynomial ring K[z] in one variable over a
field K is an example of a Euclidean domain:

Definition 2.2.3 A Fuclidean domain is an integral domain R
together with a map (called Euclidean norm)

such that for any a,b e R\{0} there exist g,r € R with

1)a=g-b+r and
2) r=0 ord(r)<d(b).

Example 2.2.4 The ring of integers Z with d(n) = |n| and the
polynomial ring K[ X] in one variable X over a field K with d (f) =
deg (f) is Euclidean.
There are many more Euclidean domains, for example, Z[i]
with
d(ay+i-az) =lay +i-as|” = a® +a3.

The Euclidean algorithm given in Theorem 1.2.2 and its proof
carry over directly to any Euclidean domain by replacing the abso-
lute value by d.

Theorem 2.2.5 FEuclidean domains are principal ideal domains
(any ideal is principal, that is, generated by a single element).
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Proof. Let I c R be an ideal in a Euclidean domain. The ideal
I =(0) is principal. Otherwise, there is a non-zero b € I with d (b)
minimal. Let a € I be arbitrary and a = g-b+r with r = 0 or
d(r)<d(b). By a,bel alsorel. As d(b) was chosen minimal, we
get 7 =0 and, hence, a € (b). This proves [ c (b)c /. =

Corollar 2.2.6 If R is a principal ideal domain, and fi,..., fs€ R,
then

(fla"'?fS) = (ng(fla"'afs)>

Proof. As R is a principal ideal domain,

(fr.,-- . fs) ={d)

with d € R, hence d | f; for all i. On the other hand, there are z; € R
with
d= ZElfl + ...+ ZL‘SfS.

So every divisor of all f; divides d. Hence

d=ged (f1,..-, fs)-

Recall that the ged is only unique up to units in R. =
Hence, the ideal membership problem translates into the follow-
ing characterization

felfi,....fs) <= gcd(fr,...,fs) divides f.
Example 2.2.7 We test whether
x3+x€I=<:p4—1, x4—3a:2—4>c@[m]

The Euclidean algorithm yields

xt-312-4 = I-(2*-1) + (-322-3)
-1 = 2?2 (22+1) + (-22-1)
= (22-1)-(22+1) + 0

hence
I={(2?+1)
and division with remainder
Prr=x-(22+1)+0,

shows that, 3 +x € 1.

So what about the general case?
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Example 2.2.8 Suppose we want to check whether
2? -yt e(a?+y, ay+a).

In order to do division with remainder, we have to decide which
term of a polynomial is the lead term. Ordering by degree is not
sufficient, consider xy® + x%y. For example, we could order the
monomials in a lexicographic way, that is, like the words in a tele-
phone book. Then

L(x%+vy) = 22 L(zy+x)=xy
and the usual strateqy for division with remainder would give
w—y?= 1-(x?+y)+(-y° - y)
2 +y
—uy? =
y -y
The lead terms we write in bold face red. So the remainder is —y? —
y # 0, however
o’ -yt =—y (2’ +y)+a(zy+x)e(2?+y, ay+z).
The problem is caused by the cancelling of the lead terms in this
expression. How to resolve the problem?

Sitmply add to the set of generators all polynomaials, which can
be obtained by canceling lead terms. The result is what is called a
Grobner basis. In the example we would add x? —y? and then

~y* -y = (2 -y + (-1)- (2" +y).
Finally, we could get rid of x> —y? or x? +y as it is sufficient to

keep one generator for each possible lead monomial. This results in
a manimal Grobner basis

-y’ zy+z, Y +y

or
x?+y, xy+z, Yy’ +v.

The second one is the unique reduced Grobner basis, which can
be obtained by removing terms in tail(f) = f - LT(f) which are
divisable by some lead monomial. For any of these Griobner bases,
the division of x? — y?> will give remainder zero: For the first one
this is trivial, since x? —y? is already an element of the Grobner
basis. For the second one, we can continue the above calculation,
resulting in the expression

2’ —y?=1- (2 +y)+ (-1) - (y*+y) +0

with remainder 0.
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Indeed, we will show in general, that when dividing f by a
Grobner basis g¢1,..., g, division will give remainder zero if and
only if f €{(g1,...,g-). We begin by formalizing this concept:

2.3 Monomial Orderings

For monomials we use multi-index notation x® = 2" - ... - 2™ with
— n
the exponent vector a = (..., ) € Ng.

Definition 2.3.1 A monomial ordering (or semigroup or-
dering) on the semigroup of monomials in the variables 1, ..., x,
1S an ordering > with

1) > is a total ordering

2) > respects multiplication, that is,
%> 28 = 2% > 2P
for all o, B,7.

Definition and Theorem 2.3.2 A global ordering is a mono-
maal ordering > with the following equivalent properties

1) > is a well ordering

(that is, any non-empty set of monomials has a smallest ele-
ment)

2) ;> 1 Vi,
3) x> 1 for all 0+ o e NJ.

4) If 8| x® and x> + 2P then x> 28
(that is, > refines divisibility).

If x; <1 Vi, then > is called a local ordering.

Proof. The implications (1) = (2) = (3) = (4) are easy, see
Exercise 2.7. With respect to (4) = (1), we have to prove that
any non-empty set of monomials has only finitely many minimal
elements with respect to divisibility. Then, by assumption (4) we
only have to consider those minimal elements, and, since > is a total
ordering, among them there is a smallest. m
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Lemma 2.3.3 (Dickson, Gordan) Any non-empty set of mono-
maals in the variables x1,...,x, has only finitely many minimal
elements with respect to divisibility.

Proof. Let M # @ be a set of monomials in the variables x4, ..., z,,
and (M) c K[z,...,x,] the ideal generated by the elements of
M. By the Hilbert basis theorem 2.1.7 we have (M) = (f1,..., fs)
with polynomials f; = ¥%, 7;;m; where r;; € K[x1,...,2,] and
mi,...,my, € M. Hence

(M) c(mq,...,my)c(M).

Among the mq,...,m, consider the minimal elements with respect
to divisibility. m

The ideal we have encountered in the proof is an example of a
monomial ideal:

Definition 2.3.4 An ideal I ¢ K[x1,...,2,] is called a mono-
maal ideal, if it is generated by monomials.

Corollar 2.3.5 Every monomial ideal has a unique set of minai-
mal generators consisting of monomials.

Proof. See the proof of Lemma 2.3.3 (or apply the lemma to the
set of monomials in the ideal). m

In the proof we have also encountered the following trivial, but
important, observation:

Lemma 2.3.6 Let I = (M) be a monomial ideal generated by the
monomials in M. If f eI, then every term of f isin I.

In particular, if f € I is a monomial, then there is an m € M
with m | f.

Proof. If f = ¥/ rym; € I with rj € K[x1,...,2,] and m; € M,
any term of f is a term of some (perhaps several) r;m; and hence
a multiple of some m;. m

We discuss some specific monomial orderings, there are many
more. First note:

Example 2.3.7 In one variable all global orderings are equivalent
to the ordering defined by x > 1, all local orderings to that defined
by x < 1.

Definition 2.3.8 The following definitions yield global monomial
orderings:
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1) Lexicographical ordering:
x> 2P < the leftmost nonzero entry of oo — 3 is positive.

In SINGULAR this ordering is abbreviated as Ip.

2) Degree reverse lexicographical ordering:
2@ > 2P < degx® > degx? or degax® =degz? and 31 <i<n:
Q= By Qg = Bisr, o < G
In SINGULAR this ordering is abbreviated as dp.

An example of a local ordering is the negative lexicographical

ordering:
2@ > 28 <= the leftmost nonzero entry of o — 3 is negative.
In SINGULAR this ordering is abbreviated as ls.

The degree reverse lexicographical ordering usually gives a bet-
ter performance than the lexicographical one. This is especially
apparent if we are computing a Grobner basis of an ideal which
is homogeneous, that is, which can be genereated by homogeneous
polynomials. Recall that a polynomial is called homogeneous if
all its monomials have the same degree. Note, that a homogeneous
ideal has a lot of non-homogeneous elements.

The lexicographical ordering is nevertheless very important, since
it has the so called elimination property, that is, it allows one to
bring polynomial systems into a triangular form. We will come
back to this property later.

Example 2.3.9 Forlp on the monomials in x,y,z we have (iden-
tifying monomials and exponent vectors)

x=(1,0,0)>y=(0,1,0)>2z=(0,0,1)
zy? = (1,2,0) > (0,3,4) = y*2*
2y’ = (3,2,4) > (3,1,5) = 23yt2®
on the other hand, for dp we get
x=(1,0,0)>y=(0,1,0)>2=(0,0,1)
ry*=(1,2,0)<(0,3,4) = y32*
2y’ = (3,2,4) > (3,1,5) = 23y2°
and for s
x=(1,0,0)<y=(0,1,0)<2z=(0,0,1)
vy’ =(1,2,0) < (0,3,4) =y’2*
23221 = (3,2,4) < (3,1,5) = 23y2°
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In SINGULAR we can compare monomials as follows:

ring R=0, (z,y,2),1lp;
>Y;

1

Y>2z;

1

TY2>Y324;

1

T3YL24>13Yy2b

1

ring R=0, (z,y,2),dp;
>Y;

1

Y>2z;

1

TY2>Y324;

0

T3Y224>c3Yy2z5

1

ring R=0, (z,y,2),1ls;
1>2z;

1

2>y,

1

P

1

TYL>Y324;

0

T3YLz4>T3Yyz5

0

45

Our definitions in the linear and univariate case generalize di-

rectly:

Definition 2.3.10 With respect to a given monomial ordering >,
for any polynomial 0 = f =Y. cox® the leading monomaal is the

largest monomial x® with c, #0 and is denoted by L (f). Further-

more, we denote by LC(f) = ¢, the leading coefficient, and by
LT (f) = cox® the leading term. For f =0 we set L(0) = LT(0) =

LC(0)=0.
Example 2.3.11 Using lp we have

L(52%y + yx?) = 2%y.
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In SINGULAR we compute the lead term, monomial and coeffi-
cient as follows:
ring R=0, (z,y,2),1lp;
poly f = bzly+zy2;
lead(f);
bz2y
leadcoef(f);
5
leadmonom(f) ;
T2Y

Definition 2.3.12 A monomial ordering > is called a weighted
degree ordering if there is some w € R™ with non-zero entries
such that

wa > wph = % > P,

Example 2.3.13 If > is any monomial ordering and w € R™, then
>u given by

% >, 2% < wa>wp or (wazwﬁ andazo‘>$ﬁ)

15 a monomaial ordering.

The ordering >, which takes over if the w-weights of x® and x
are equal, is called tie-break ordering.

By construction, >, is a weighted degree ordering, it is global if
w; >0 Vi and it is local if w; <0 V1.

For the purpose of explicit computations, which will only involve
a finite number of monomials, we can represent any monomial or-
dering by a weight vector:

Proposition 2.3.14 Given a monomial ordering > and a finite set
M of monomials in the variables x1,. .., x,, there is a weight vector
w e Z"™ with

2>l —=w-a>w-p

for all x®,xP € M.
We can choose w such that w; >0 if x; > 1 and w; <0 if z; < 1.

Proof. Consider
D, :={a-pBeZ"|z*>a"}.
If aq — 61,0&2 - 52 € D> then

T2 = @1 02 5 Bl 5 BB $'Bl+52,
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hence
61,(52 € D> = (51 +52 € D>.

So for all \; e N and 6; € D,
YN0 € Ds.
As 0¢ D., we get Y, \0; #0 for all §; € D, and \; € Qsg, hence
0 ¢ convHull(D,).
Here for a set of vectors V' c Z", we write
convHull(V) = {¥_ X\id; | d; € V., N\i € Quo, iy Ni =1}

For an example in Figure 2.5 the grey area is the convex hull of the
black points. So also for

Figure 2.5: A convex hull

DM:={a-BeZ" 2% 2" e M, 2* > 2"}

we have
0 ¢ convHull(DM).

Thus there is a w € Z" such that convHull(DM) is contained in
the half space where the linear form ¢ — wd takes positive values.
Hence,

wod >0 for all § € D..

For the second statement observe: This w satisfies w; > 0 if
x; > 1 and w; <0 if x; <1, provided that 1,z,...,2, € M. =

Note that this representation of > via scalar weights obtained
from the linear form w- is in general not valid for comparing arbi-
trary monomials (in one variable it is). However one can represent
any monomial ordering in n variables by using a vector valued lex-
icographic comparison

Example 2.3.15 For the lexicographical ordering > wn the vari-
ables x1,x5 and the set of all monomials M of degree < 4, the set
DM s plotted in Figure 2.6.The figure also shows the line wd = 0,
where w 1s a weight vector representing lp on all monomials of de-
gree < 4. For more examples see Ezercise 2.9.
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Figure 2.6: DM for the ordering Ip and the set M of monomial of
degree <4

You can imagine that a Grobner basis computation for a fixed
ideal will only involve finitely many monomials due to the Noethe-
rian property of the polynomial ring. The equivalent weight vectors
w form a cone and these cones fit nicely together in what is called
the Grobner fan (that is, the intersection of two such cones is
again one of the cones). Figure 2.7 shows the Grébner fan clas-
sifying the non-equivalent weight vectors for f =z +y + 1 and the
initial term of each cone. Given a weight-vector w, the initial term
in, (f) is the sum of all terms of f with maximal w-weight. Then
the Grobner fan of (f) consists of the closures of cones

{w]in,(f) = g}

for any possible initial form ¢. These cones are given by linear
inequalities. As an exercise determine these inequalities. The def-
inition of the Gronber fan can be generalized to ideals with more
than one generator, however to do this, one requires Grobner basis
techniques.

If you have heard about tropical geometry, the tropical variety
of an ideal can be considered as a subfan of the Grobner fan. In the
example, it consists of those faces such that in,(f) is not a mono-
mial. So the three black half-lines in the figure form the tropical
variety of a line.
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X+ 1

Figure 2.7: Grobner fan of the line.

2.4 Monomial Orderings and Localiza-
tions

Monomial orderings are closely related to the concept of localiza-
tions, which again have and important geometric interpretation.

Definition 2.4.1 A local ring is a ring which has exactly one
mazimal ideal.

Definition 2.4.2 Let R be a ring. Given a multiplicatively closed
set S c R, that is, a set with 1€ S and

51,50€ 8 = 51-50€8

the localization of R with respect to S is the ring

S‘lR::{gheR, seS}

where = is the equivalence class of all (1',s") with respect to the

equivalence relation
(r,s) ~ (r',s") <= 3q € S with q(rs' —r's) =0,

and addition and multiplication are defined by the usual formulas
for calculating with fractions.

Example 2.4.3 1) With S =7Z/{0},

Q=5"7.
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2) More generally we can construct in this way the quotient field
Q(R) of an integral domain R, for example the function field

K(zy,...,2,) = Q(K[x1,...,2,])
over a field K.

3) If P ¢ R is a prime ideal in a ring R, then S = R\P is
multiplicatively closed and we write

Rp=S"'R

for the localization of R at the prime ideal P. The ring
SR is a local ring with mazximal ideal

P-sz{fwep, 3¢P}.
S

Remark 2.4.4 If R is Noetherian then S'R is also Noetherian.

We leave the details as an easy exercise. Geometrically,localization
at a prime ideal corresponds to investigating an algebraic set at lo-
cally at P:

Example 2.4.5 Consider the curve C' =V (1) c A2(K) defined by
I=((x-1)-y) c R=K[x,y]. In the localization at the maximal
ideal P = (z,y) ¢ R we have that

I-Rp=(y)

since t —1 ¢ P is a unit in Rp. So locally at the point (0,0) the
curve C' looks like a line, whereas at the point (1,0) it looks like the
intersection of two line, see Figure 2.8.

Example 2.4.6 If K is a field and > s a monomial ordering on
the semigroup of monomaials in xq,...,T,, then

Sy ={ueK|[xy,...,z,] | LM(u) =1}
15 multiplicatively closed. We write
Klzy,...,2,]s = ST K [2q,...,1,]

for the corresponding localization of the polynomial ring with respect
to >.
By Definition and Theorem 2.5.2, > is global if and only if S5 =
K*, that is
Klxy,...,xn)s = K[x1,...,2,].

On the other hand if > is local then
Ko, ... xn]s = K21, 20 ]
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Figure 2.8: Local properties of union of two lines

We can use this construction to describe localizations at arbi-
trary coordinate planes:

Example 2.4.7 If> is a local ordering on the monomials in xy, ..., x,,
then

K[xla e Ty Y1, - '7ym](x1 ..... Tn) — K(yla ce 7ym)[x17 ce 7zn]>-

The proof is FExercise 2.10.

We can extend the notion of a lead monomial to K[xy,...,2z,]s
in the following way. This will lead to a Grébner bases theory in
K[x1,...,2,]>, the so called theory of standard bases.

Definition 2.4.8 If f € K[x1,...,x,]> there is a polynomial u €
Klxy,...,x,] with

LT(u)=1and u- f e K[z1,...,2,].

We define
L(f) = L(u- [).

In the same way, we define
LC(f)=LC(u- f)
LT(f) = LT(u- f)
tail(f) = tail(u - f).

In Exercise 2.13 we show that these definitions are independent
of the choice of w.
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2.5 Division with Remainder and Stan-
dard Bases

Fix a monomial ordering on K[z1,...,z,] and write R = K[x1,...,2,]>.
If we consider a global monomial ordering, that is, R = K[x1,...,2,],
then it is pretty clear, how to do division with remainder. Algo-
rithm 2.5.1 divides f e R by ¢1,...,9 € R.

Algorithm 2.5.1 Division with remainder

Input: feR, gq,...,9s € R, >be a global ordering on the monomials
of R.

Output: An expression

f=q+r=Ya;g; +7

such that L(r) is not divisible by any L(g;).
qg=0

r=

while r # 0 and L(g;) | L(r) for some ¢ do

Cancel the lead term of r:
_ LT(r)

Rz

g=q+ag;

r=r-—a-g;

Proof. In every step the lead term of r becomes smaller with
respect to >, so the algorithm terminates, since > is a well-ordering.
]

Example 2.5.1 Using lp divide 2y +x by y—1 and 2 - 1.

’y+x= 22(y-1)+1-(>-1)+x+1
T

T+

2?2 -1

r+1

Remark 2.5.2 The assumption that > is global is necessary for the
termination: If we divide x by x —x? using the local ordering x <1,
then Algorithm 2.5.1 will compute

r=1-(x-2%)+z’

=(1+2) (x-2%)+a°

= (Zzowi) (x-2*)+0
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that is, the geometric series expansion of

T 1

r—-x2 1-=x =0

So the algorithm works as expected, but does not give an answer
after finitely many steps. We will come back to this (however, the
solution is pretty obvious, clear the denominator 1 -z ).

We will now show that Algorithm 2.5.1 solves the ideal mem-
bership problem, provided we divide by a Grobner basis, and we
will develop a modified version of the algorithm that will also do
the job for non-global orderings.

Definition 2.5.3 Given a monomial ordering > and a subset G c

R, we define the leading ideal of G as
L(G) = L.(G) = (L(f) | f e G\{0}) ¢ R,

the monomual ideal generated by the lead monomials. If the choice
of > is clear, we also write L(G).

Given an ideal I the ideal L(I) will contain all possible lead
monomials obtainable by cancelling lead term, hence we define:

Definition 2.5.4 (Standard and Grébner bases) Let I be an
ideal and > a monomial ordering. A finite set

Gcecl
with 0 ¢ G is called a standard basis of I with respect to >, if
L(G) = L(I).
If > s global, then we call a standard basis also a Grobner basis.

Note that the inclusion c is true for any subset. The existence
of a standard basis is easy:

Theorem 2.5.5 Fvery ideal I ¢ R has a standard basis.

Proof. Since L(I) is finitely generated, L(I) = (my,...,ms) with
monomials m;. Furthermore, m; is divisible by some L(g;) for some
gi € I, see Lemma 2.3.6. Hence

L(I) = (L(gl)7 e 7L(gs)>7
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SO g1, .. .,9s form a standard basis of /. =

From the definition it is not clear whether a standard basis of
I is indeed a set of generators of I. Solving the ideal membership
problem will answer also this question.

Our goal will be to handle the global and non-global setting
in an uniform way. We first formlize the abstract properties of
Algorithm 2.5.1 in the notion of a normal form.

Definition 2.5.6 Given a list G = (g1,...,9s) € R, a normal
form is a map NF(-,G) : R - R with

1) NF(0,G) =0.

2) If NF(f,G) #0 then L(NF(f,G)) ¢ L(G).

3) For every 0+ f € R there are a; € R with
f=-NF(f,G) = £i.10:9:

and L(f) > L(a;g;) for all i with a;g; #+ 0. Such an expression
we call a standard represenation of f.

We also say that NF is a normal form, if NF(-, Q) is a normal
form for all G.

As discussed above, in the non-global setting we will have to
relax property (3) allowing for clearing denominators:

Definition 2.5.7 A weak normal form is a map NF(-,G) :
R — R with condition (1) and (2) of the previous definition and

3’) For every 0 # f € R there is a unit uw € R* such that u- f has
a standard representation.

A weak normal form is called polynomial weak normal form
if for every f e K[x1,...,2z,] and list G ¢ K[x1,...,x,] there exists
aunitu € R*nK[x1,...,x,] such that there is a standard expression

u-f=NF(f,G) = ¥ 1a:g;
with a; € K[:Ul, - 75(7“].
Remark 2.5.8 1) Any normal form is a weak normal form.

2) Note that any weak normal form induces a normal form by
division with u. However only if > is global, i.e., R* = K*,
this normal form will be polynomial.
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Since in the applications we can usually work with polynomial
data, we will use polynomial weak normal forms for local orderings,
and normal forms for global orderings.

Lemma 2.5.9 Given a list G = (g1,...,9s) and any order of pref-
erence of the g; in the division, Algorithm 2.5.1 yields a normal
form NF(-,G). It is called the Buchberger normal form.

Proof. We map f to NF(f,G) :=r. If the algorithm returns re-
mainder r # 0 then L(r) is not divisible by any L(g;), so L(r) ¢
L(G) by Lemma 2.3.6. Condition (3) is clear, since in every itera-
tion of the algorithm L(a-g;) < L(f). m

Using standard bases and a weak normal form, we can now
decide the ideal membership problem:

Theorem 2.5.10 (Ideal membership) Let I c R be an ideal and
feR. IfG=A{q1,...,9s} is a standard basis of I and NF is a weak
normal form, then

fel < NF(f,G)=0.

Proof. Consider a standard expression uf = Y, a;g; + r with r =
NF(f,G), a; € R and we R*. If r =0 then uf = ¥, a;g; € (G) c I,
hence f € I. On the other hand, if » # 0 then by Definition 2.5.6

(2.)
L(r) ¢ L(G) = L().

So, by definition of the lead ideal,
ré¢l,
hence uf =Y, a;,g;+r¢l,so f¢l. m

Lemma 2.5.11 If J c I ¢ R are ideals with L(J) = L(I) then
I=1J.

Proof. Let G = {g1,...,gs} be a standard basis of J, NF a weak
normal form, f el and uf =3, a;g9; + r a standard expression with
r=NF(f,G). Sorel. If r#0, then by Definition 2.5.6 (2.)

L(r) ¢ L(G) = L(J) = L(I).

By the definition of the lead ideal, we have r ¢ I, a contradiction.
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Corollar 2.5.12 If G is a standard basis of I, then
I=(G).

Proof. We have L(I) = L(G) c L({G)) c L(I), so G is a standard
basis of (G) c I and L({G)) = L(I). Equality follows from Lemma
2.5.11. =

Example 2.5.13 The generators of the ideal I = (z?> -1,y -1) al-
ready form a Grébner basis with respect to lp: Since x ¢ L(I) (Ez-
ercise) we have

L(I) = (:pz,y> .
Corollar 2.5.14 For any monomial ordering >, the ring
R=K[xy,...,2,]>
is Noetherian.

Proof. By Theorem 2.5.5 any ideal in R has a standard basis,
which consists out of finitely many elements, and by Corollary
2.5.12 this standard basis generates the ideal. m

In particular, this proves again that K[x1,...,z,] is Noetherian,
see Corollary 2.1.8.

Of course, the result of division with remainder depends on
the monomial ordering. But, even if we fix a monomial ordering
and divide by a Grébner basis, the result may not be uniquely
determined in the sense that the remainder depends on the order
of preference of the divisors g; in the division algorithm:

Example 2.5.15 At every step of Algorithm 2.5.1, there can be
several choices of g; such that L(g;) | L(f). We divide 2%y + = by
the Grébner basis G ={y—1,22 -1}, using lp as in Example 2.5.1.
However we now prefer x? — 1 over y—1 when possible:

r?y+x= y-(x?2-1)+r+y
2y -y

Tr+y

So depending on the choice made, the remainder will be x +1 or
T+y.

To have a uniquely determined remainder, we proceed as follows:
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Definition 2.5.16 An element f € R is called reduced with re-
spect to a set G c R, if no term of the power series expansion of f
is contained in L(G).

A normal form NF is called reduced normal form, if NF(f,G)
is reduced with respect to G for all f and G.

Algorithm 2.5.2 yields a reduced normal form, the reduced
Buchberger normal form.

Algorithm 2.5.2 Reduced division with remainder

Input: feR, g1,...,9s € R, >be a global ordering on the monomials
of R.

Output: An expression

f=q+r=Y_1a;9; +7

such that not term of r is divisible by any L(g;).

1: ¢=0

2: r=0

3 h=f

4: while h #0 do

5. if L(g;) | L(h) for some i then
6: Cancel the lead term of h:

_ L)

v = T1(4)

8: q=q+a-g;

9: h=h-a-g;
10: else
11: Put the lead term into the remainder:
12: r=r+LT(h)
13: h=h-LT(h)

Example 2.5.17 So, also putting terms into the remainder in the
intermediate steps, we can continue in Example 2.5.15:

y+r= y-(2°-1)+x+1-(y-1)+1
%y -y

xTr+y

Yy

y—1

1

which leads to the same remainder x+1 as in Example 2.5.1. Indeed,
the remainder is now unique provided we divide by a Grobner basis:
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Theorem 2.5.18 Let > be a global ordering, I ¢ R an ideal, f € R
and G a Grobner basis of I. If NF is a reduced normal form, then
NF(f,G) is uniquely determined by >, f and I. We then also write
NFE(f,1).

Proof. Write G = {g1,...,gs} and suppose that

f= Zleaigi +r

S 14 !
= 2i-10;Gi 7

Then
r—r'=% (e —aj)g €(G)=1

(using Corollary 2.5.12). So, if r = 7" # 0, then L(r —r") € L(I) =
L(G). Since L(r —r’) is a monomial of r or 7/, this would mean
that r or r’ is not reduced with respect to G. =

Example 2.5.19 In SINGULAR we can compute the reduced Buch-

berger normal form in Example 2.5.17 by:

ring R=0, (z,y), lp;

i1deal I = z2-1,y-1;

We first check that the generators of I form a Grobner basis:
=std(I);

I;

I[1]=2z-1

I[2]=z2-1

reduce (z2y+z,I);

T+l

The non-reduced version is called by reduce (-, -, 1).

SINGULAR makes the choices in the algorithms for you in a clever

way, however, you cannot influence this.

The standard expression of f respectively uf including the remain-

der and the unit w is returned by the command division (in the

stated order):

division (z2y+z,I);

[1]:

_[1,1]=x2

_[2,1]=1

[2]:

_[1]=z+1

[3]:

_[1,1]=1

Since we are working with a global ordering, SINGULAR chooses the

unit to be 1.
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Remark 2.5.20 Even when using a reduced normal form and a
Grobner basis, although the remainder is unique, the generated ex-
pression in the generators may not be. In the Examples 2.5.1 and
2.5.17 we obtain

oly+x=y-(x?-1)+1-(y-1)+z+1

and
vly+x=2>(y-1)+1-(z’-1)+w+1

respectively.
When dividing f by G = (g1,-..,9s), we can obtain a unique
exTPTession
f=Yaigi+r

by requiring that no term of a;L(g;) is divisible by any L(g;) for
j <.

In the example, the first expression would be returned for G =
(z2-1,y-1), and the second for G = (y—-1,2%2-1).

2.6 Computing Standard Bases

In Section 2.2 we have already seen the basic idea for computing
a Grobner basis of an ideal. We will now turn this idea into an
algorithm. The formulation will also be applicable in the case of
standard bases. So again write R = K[xy,...,x,]s for a fixed mono-
mial ordering >.

Definition 2.6.1 The syzygy polynomszal or S-polynomszal of
f,g € R is defined as

lem(L(f), L(g))
LT(f)

Doing all possible cancelations of lead terms, Algorithm 2.6 com-
putes a standard basis.

(L)L)

I=T1()

spoly(f,g) =
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Algorithm 2.6.1 Buchberger
Input: 7 =(gi,...,9s) ¢ R an ideal, > a monomial ordering, and NF
a weak normal form.
Output: A standard basis of I with respect to >.
1 G= {91, "'798}
2: repeat
3 H=G
4: for all f,ge H do
5 = NF(spoly(f,9),H)
6: if r #+ 0 then
7
8:

G=Gu{r}
until G =H

Proof. If r # 0 then L(r) ¢ L(H) by Definition 2.5.6(2.), hence
L(H) g L(H u{r}).

So, by the Noetherian property of R, the algorithm terminates with
NF(spoly(f,g),H) =0 for all f,ge H.
To show that the final result is a standard basis, we prove: =

Theorem 2.6.2 (Buchberger’s criterion) If I c R is an ideal,
NF a weak normal form and

G={g1,...,9s}c1

a set of elements of I with 0 ¢ GG, then the following conditions are
equivalent:

1) G is a standard basis of I.
2) NF(f,G)=0 forall fel.
8) I ={G) and NF(spoly(gi,g;),G) =0 for all i # j.

Proof. (1) = (2) = (3): If G is astandard basis we get NF(f,G) =
0 for all f eI by Theorem 2.5.10. For the second implication, note
that spoly(g;,g;) € I and by NF(f,G) = 0 and Definition 2.5.6(3’)
any element of  can be written in terms of the generating system G.

(2) = (1): If f € I then again by NF(f,G) = 0 and Definition

2.5.6(3") we have an expression

uf = Z?zlaigi

with a unit v and L(f) = L(uf) > L(a;g;) for all i. So there has
to be an i with L(f) = L(a;g;), which implies that L(g;) | L(f).
Hence L(f) € L(G).
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(3) = (1): We have to show that if f € I then L(f) e L(G). By

assumption there are a; € R with
f=Yr1ag:.
Clearly L(f) < max; L(a;g;). If L(f) < max; L(a;g;), then some

lead terms of summands in Y} a;g; cancel, say L(a;, g;,) and L(a;,g:,)-
By assumption we have a division expression

O=wu- SpOIY(gh ) glz) - Zzszlcigi

with a unit @. Such a relation is called a syzygy. Subtracting a
multiple of this equality from the equality f = Y7 ;a;9; we obtain a
new expression for f with smaller max; L(a;g;). After finitely many
steps L(f) = max; L(a;g;), hence L(g;) | L(f) for some i, that is,
L(f)eL(G). m

For the step (3) = (1) we have given more like a sketch of a
proof. The theory of standard bases for modules will enable us to
write down a very elegant proof later.

Example 2.6.3 Using Buchberger’s criterion we can easily check
that G = {x* - 1,y — 1} is a Grobner basis of I = (G) with respect
to lp: For the S-pair
s=y(x?-1)-a*(y-1) =27~y

division with remainder gives NF(s,G) = 0:

z?-y= 1-(x?-1)-1-(y-1)+0

x?-1

-y +1

-y +1

0
Example 2.6.4 We apply Buchberger’s algorithm to compute a
Grobner basis of

I= <t2 —x,tP -y, t* —z) cklt,z,y,z]

for the lexicographical ordering t > z >y > x. In each step the first
column denotes the coefficients in the syzygy polynomial and the
second the (reduced) division with remainder.

P —tx+yl|r -tx+z|r -ty+z|r ty-z22
tP-x |t 2 —ty
-y | -1 t
th -2 -1 -1 x
tr -y 1 3 -y
z — a2 -1 -1 T
ty — x? 1
y? - a3 -1
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Writing this in terms of syzygies

t

t?—x t t2+x 0 -ty

tP—y -1 0 t 0

th -2 0 -1 -1 T

te—vy 1 0 0 -t3-y|=0.
z —x? 0o -1 -1 x

ty — x? 0 0 1 0

y? -3 0 0 0 y?-a3

As an exercise, do the divisions with remainder and show that all
remaining syzyqgy polynomials reduce to 0. So a Grdébner basis of I
1S given by

G=(t-x,t -y t' -z, tx -y, z - 2% ty - 2%, y*> - 2°).
However, do we need all these polynomials?

Definition 2.6.5 A standard basis G = {q,...,gs} is called min-
tmal, if L(g;) + L(g;) for alli+j.

If, in addition, LC(g;) = 1 and tail(g;) is reduced with respect
to G for all i, then, G is called reduced.

Remark 2.6.6 From any standard basis we can obtain a minimal
one by deleting elements.

Proof. Given a standard basis G = {g1,...,9s}, by Lemma 2.3.3,
the set {L(g;)|i} has a unique subset of minimal elements with
respect to divisibility. This subset also generates L(G), and, hence,
the corresponding g; form a standard basis. m

Remark 2.6.7 A minimal standard basis is minimal in the sense
that we cannot delete any element without loosing the standard basis

property.

Theorem 2.6.8 Let > be a global ordering. FEvery ideal has a
unique reduced Grébner basis (up to permutation of the elements).

Proof. Suppose G and H are reduced Grobner bases of the ideal
I. By
L(G) = L(I) = L(H)

and since G and H are minimal, for any g € G there is an h € H
with L(g) = L(h). Then

s =g—h=tail(g) - tail(h)
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and, as no term of the tails is divisible by any lead term, we have
s =NF(s,G).

Finally s = NF(s,G) =0 by the Ideal Membership Theorem 2.5.10
and sel. m

Remark 2.6.9 Fix a global ordering >. If G ={g1,...,gs} is min-
imal and NF is a reduced normal form, then H = {hy,..., hs} with

h; = NF(gi7 (917 <oy Gi-1,Giv1y - - - ugs))

15 the reduced Grobner basis of I.

Proof. If G is minimal, then L(g;) is not divisible by any L(g;) for
i+ 7, s0 L(g;) = L(h;). By construction, tail(h;) is reduced with
respect to h; for j #4. Moreover, no term of tail(h;) is divisible by
L(h;), since by Definition and Theorem 2.3.2 the global ordering
refines divisibility. =

Example 2.6.10 In Example 2.6./ a minimal Grobner basis is

G={t’-mtr-y z-2°ty-22y*-23}.

Example 2.6.11 For Fxample 2.6./ we can compute a minimal
Grobner basis using SINGULAR as follows:
ring R=0, (t,z,y,z),lp;

1deal I = t2-z,t3-y,t4-2;

std(I);

_[1]=y2-z3

_[2]=z-x2

_[3]=tz-y

_[4]=ty-z2

_[5]=t2-z

In this example, the result is already reduced.

Example 2.6.12 In general, the Grobner basis returned std may
not be reduced. To force SINGULAR to compute the reduced Gréobner
basis, we set the option redSB:

ring R=0, (z,y),lp;

tdeal I = z+y,y;

std(I);

_[1]=y
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_[2]=z+y
option(redSB);
std(I);

_[1]=y

_[2]=z



