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Ideals, Varieties and
Standard Bases

2.1 Ideals and Varieties

We begin with an easy, but important, observation about the alge-
braic set V (f1, . . . , fs) with fi ∈ R =K [x1, . . . , xn]:

If f1 (p) = 0, . . . , fs (p) = 0 for p ∈ An(K), then also any R-linear
combination of the fi vanishes on p, that is,

(
s

∑
i=1

ri ⋅ fi)(p) =
s

∑
i=1

ri (p) fi (p) = 0

for all ri ∈ R. Hence, V (f1, . . . , fs) depends only on the ideal

⟨f1, . . . , fs⟩ = {∑
s
i=1rifi ∣ ri ∈ R} ⊂ R,

generated by f1, . . . , fs. Recall:

Definition 2.1.1 Let R be a commutative ring with 1. An ideal
is a non-empty subset I ⊂ R with

a + b ∈ I

ra ∈ I

for all a, b ∈ I and r ∈ R.
If S ⊂ R then

⟨S⟩ = {∑finiterifi ∣ ri ∈ R, fi ∈ S}

is the ideal generated by S.

29



2. IDEALS, VARIETIES AND STANDARD BASES 30

Figure 2.1: Elliptical arc

Recall, that the definition of an ideal is motivated in algebra
by the following: For a subgroup I ⊂ R the additive group R/I
becomes a ring with multiplication induced by that of R if and
only if I is an ideal (prove this as an easy exercise).

By the above observation it is natural to consider, instead of
the vanishing locus of a set of equations, the vanishing locus of an
ideal:

Definition 2.1.2 If I ⊂K [x1, . . . , xn] then

V (I) = {p ∈Kn ∣ f (p) = 0 ∀f ∈ I}

is called the vanishing locus of I.

This is indeed an affine variety, because any ideal I ⊂ k [x1, . . . , xn]
is finitely generated, as we will prove in Theorem 2.1.7.

Definition 2.1.3 Let S ⊂ An(K) be a subset. Then

I(S) = {f ∈K [x1, . . . , xn] ∣ f (p) = 0 ∀p ∈ S}

is (as we have seen above) an ideal, the vanishing ideal of S.

Example 2.1.4 Consider the elliptical arc

S = {(x1, x2) ∈ An(R) ∣ x2
1 + 2x2

2 = 1 and x1, x2 ≥ 0}

shown in black in Figure 2.1. We have

I(S) = (x2
1 + 2x2

2 − 1)

hence V (I(S)) is the complete ellipse, the smallest algebraic set
containing S. This is the closure

S = V (I(S))
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of S in the so called Zariski topology:
The Zariski topology on An(K) has as closed sets the V (I)

for ideals I ⊂K [x1, . . . , xn]. See also Exercise 2.2, which you need
to show that this indeed gives a topology.

By I and V inclusion reversing maps

{affine algebraic sets X ⊂ An(K)}
I
⇄
V

{ideals in K[x1, . . . , xn]}

between the set of algebraic subsets of An(K) and the set of ideals
of K [x1, . . . , xn] are given. It remains to show that any ideal I ⊂
K[x1, . . . , xn] is finitely generated, that is, there are finitely many
f1, . . . , fs ∈ R with I = ⟨f1, . . . , fs⟩. We begin with a characterization
of these ideals:

Theorem 2.1.5 Let R be a commutative ring with 1. The follow-
ing conditions are equivalent:

1) Every ideal I ⊂ R is finitely generated .

2) Every ascending chain

I1 ⊂ I2 ⊂ I3 ⊂ ... ⊂ In ⊂ ...

of ideals terminates, that is, there is an m, such that

Im = Im+1 = Im+2 = ...

3) Every non-empty set of ideals has a maximal element with
respect to inclusion.

If R satisfies these conditions, then R is called Noetherian.

These rings are called Noetherian after Emmy Noether (1882-
1935), who has formulated the general structure theory for this class
of rings and used this to give a simpler and more general proof of
the theorems of Kronecker and Lasker.
Proof. (1)Ô⇒ (2): Let I1 ⊂ I2 ⊂ ... be a chain of ideals. Then

I = ⋃∞
j=1Ij

is also an ideal: If a, b ∈ I, then there are j1, j2 ∈ N with a ∈ Ij1 ,
b ∈ Ij2 , and

a + b ∈ Imax(j1,j2) ⊂ I
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By (1) the ideal I is finitely generated, hence there are a1, . . . , as ∈ I
with I = ⟨f1, . . . , fs⟩. For every fk there is a jk with fk ∈ Ijk . For

m ∶= max{jk ∣ k = 1, . . . , s}

we have f1, . . . , fs ∈ Im, so

I = ⟨f1, . . . , fs⟩ ⊂ Im ⊂ Im+1 ⊂ ... ⊂ I

and hence
Im = Im+1 = ...

(2) Ô⇒ (3): Assume that (3) does not hold. Then there is a set
M of ideals, such that for every I ∈M there is an I ′ ∈M with I ⫋ I ′

strictly contained. Hence, by induction, we obtain a sequence

I1 ⫋ I2 ⫋ I3 ⫋ ...

of ideals in M , which does not terminate, that is, (2) is not satisfied.
(3)Ô⇒ (1): Let I be an arbitrary ideal. The set

M = {I ′ ⊂ I ∣ I ′ finitely generated}

is non-empty, for example, ⟨0⟩ ∈M . Let J be a maximal element of
M . So there are f1, . . . , fs ∈ J with J = ⟨f1, . . . , fs⟩. We show that
I = J : If this is not true, then there is an f ∈ I/J with

J ⫋ ⟨f1, . . . , fs, f⟩ ⊂ I.

This contradicts the maximality of J .

Example 2.1.6 1) The ring of integers Z is Noetherian, since
all ideals of Z are of the form

⟨n⟩ = nZ = {nk ∣ k ∈ Z}

and, hence, are finitely generated (by a single element). See
Exercise 2.1.

2) A field K only has the ideals (0) and K = (1), in particular,
K is Noetherian.

3) If R is Noetherian and I ⊂ R an ideal, then the quotient ring
R/I is Noetherian:

Let π ∶ R → R/I be the canonical epimorphism. If J ⊂ R/I
an ideal then by assumption π−1(J) = ⟨f1, . . . , fs⟩, and J =
⟨π(f1), . . . , f(fs)⟩.
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4) The polynomial ring K[x1, x2, ...] in infinitely many variables
is not Noetherian. Also the ring

R = {f ∈ Q[X] ∣ f(0) ∈ Z}

of polynomials in Q[X] with integer values at 0 is not Noethe-
rian. See Exercise 2.4.

Hilbert has shown in 1890, that the polynomial ring K [x1, ...xn]
over a field K is Noetherian:

Theorem 2.1.7 (Hilbert’s basis theorem) If R is a Noetherian
ring, then also R [x] is Noetherian.

Using that a field K and the ring of integers Z are Noetherian,
by induction on the number n of variables

R [x1, . . . , xn] = R [x1, . . . , xn−1] [xn]

we obtain:

Corollar 2.1.8 Let K be a field. Then the polynomial rings K [x1, ...xn]
and Z [x1, ...xn] in n variables are Noetherian.

The fact that K [x1, ...xn]is Noetherian, is the basis of all algo-
rithms, we will discuss.

For the proof of Theorem 2.1.7 we consider the lead coefficients
in R of polynomials in R [x]. If

f = akx
k + ... + a1x + a0 ∈ R [x]

with ak ≠ 0 then the degree of f is deg (f) = k, its lead coeffi-
cient is LC (f) = ak, its lead term LT (f) = akxk, and its lead
monomial L (f) = xk.
Proof. Assume R [x] is not Noetherian. Then there is an ideal
I ⊂ R [x] which is not finitely generated. Let f1 ∈ I with deg (f1)
minimal, f2 ∈ I/ ⟨f1⟩ mit deg (f2) minimal, and inductively

fk ∈ I/ ⟨f1, . . . , fk−1⟩

with deg (fk) minimal. Then

deg (f1) ≤ deg (f2) ≤ ... ≤ deg (fk) ≤ ...

and we obtain an ascending chain of ideals in R

⟨LC (f1)⟩ ⊂ ⟨LC (f1) ,LC (f2)⟩ ⊂ ... ⊂ ⟨LC (f1) , . . . ,LC (fk)⟩ ⊂ ...
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We show that the inclusions are strict (and hence R is not Noethe-
rian): Assume

⟨LC (f1) , . . . ,LC (fk)⟩ = ⟨LC (f1) , . . . ,LC (fk+1)⟩

Then we can write

LC (fk+1) =
k

∑
j=1

bj LC (fj)

with bj ∈ R. Hence

g ∶=
k

∑
j=1

bj ⋅ x
deg(fk+1)−deg(fj) ⋅ fj

∈ ⟨f1, . . . , fk⟩

has the same lead term as fk+1, so

deg (g − fk+1) < deg (fk+1) ,

a contradiction, since fk+1 was chosen to have minimal degree.
So any algebraic set can be represented by an ideal, and any

ideal gives an algebraic set. However, the V -map is not injective,
for example,

V (x) = V (x2) ⊂ A1(K).

There are two ways to remedy this situation. One possibility is
to generalize our notation of an algebraic set: Given I ⊂ R =
K[x1, . . . , xn] we replace V (I) by the spectrum

Spec(R/I) = {P ⊂ R/I ∣ P prime ideal}

and consider R/I as the ring of function on Spec(R/I). Together
with the Zariski topology we obtain a generalization of an alge-
braic set, called a scheme. An easier approach is to restrict the
class of ideals in consideration. To determine that class of ideals, it
is, astonishingly, enough to find out, under which conditions an al-
gebraic set is empty. This is characterized by the following theorem
of Hilbert (which we cannot prove here):

Theorem 2.1.9 (Weak Nullstellensatz) Let K be an algebraically
closed field and I ⊂K[x1, . . . , xn] an ideal. Then

V (I) = ∅⇐⇒ I =K[x1, . . . , xn]

Remark 2.1.10 The condition, that K is algebraically closed, is
necessary. For example, V (x2 + y2 + 1) ⊂ A2(R) is empty (it is not
empty over C).
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From Theorem 2.1.9 we obtain:

Theorem 2.1.11 (Strong Nullstellensatz) Let K be an alge-
braically closed field and I ⊂K[x1, . . . , xn] an ideal. Then

I(V (I)) =
√
I.

where √
I = {f ∈K[x1, . . . , xn] ∣ ∃a ∈ N with fa ∈ I}

denotes the radical of I.

Proof. According to the basis theorem, write I = ⟨f1, . . . , fs⟩. For
f ∈ I(V (I)) consider

J = ⟨I, y ⋅ f − 1⟩ ⊂K[x1, . . . , xn, y].

Since f vanishes at any common zero of f1, . . . , fs, and, hence, y ⋅
f − 1 does not, we have V (J) = ∅. So by Theorem 2.1.9 J =
K[x1, . . . , xn, y], that is, there are ci, d ∈K[x1, . . . , xn, y] with

1 = c1 ⋅ f1 + ... + cs ⋅ fs + d ⋅ (y ⋅ f − 1).

Substituting y = 1
f makes the coefficients to ci(x1, . . . , xn,

1
f ). So

multiplying with a sufficiently high power a of f cancels the de-
nominators and yields fa ∈ I.

The other inclusion is easy.

Definition 2.1.12 An ideal I ⊂ K[x1, . . . , xn] is called a radical
ideal, if I =

√
I.

Theorem 2.1.11 shows that, if K is algebraically closed,

{affine algebraic sets X ⊂ An(K)}
I
⇄
V

{radical ideals in K[x1, . . . , xn]}

is a one-to-one correspondence. In Exercise 2.3 we will prove, that
an algebraic set X = V (I) is irreducible, if and only if I(V (I)) is
prime. This is true over any field K. If K is algebraically closed,
then, by the strong Nullstellensatz, V (I) is irreducible iff I(V (I)) =√
I is prime. In particular, if I is prime then V (I) is irreducible.

Note that this is not true in general if K is not algebraically closed.
So for K algebraically closed we obtain a one-to-one correspondence
of varieties (irreducible algebraic sets) and prime ideals:

{affine varieties X ⊂ An(K)}
I
⇄
V

{prime ideals in K[x1, . . . , xn]}
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If K is algebraically closed, the points correspond to the maximal
ideals, that is, we have a one–to-one correspondence

{maximal ideals of K[x1, . . . , xn]}
V
⇄
I

Kn

⟨x − a1, . . . , x − an⟩ (a1, . . . , an)

Recall, that an ideal P ⫋ R of a commutative ring R with 1 is
called prime ideal, if ∀a, b ∈ R it holds

a ⋅ b ∈ P Ô⇒ a ∈ P or b ∈ P .

The ideal P is called maximal ideal, if for all ideals I ⊂ R it holds

P ⊂ I ⫋ RÔ⇒ P = I.

Recall also the following, standard and easy to prove, characteriza-
tion of prime and maximal ideals:

Theorem 2.1.13 Let R be a commutative ring with 1 and I ⫋ R
an ideal. Then it holds:

1) I prime ⇐⇒ R/I is an integral domain.

2) I maximal ⇐⇒ R/I is a field.

Example 2.1.14 1) The ideal ⟨x2⟩ ⊂K[x1, x2] is a prime ideal,
because

K[x1, x2]/ (x2) ≅K[x1]

is an integral domain. On the other hand, ⟨x1 ⋅ x2⟩ is not a
prime ideal, since

x1 ⋅ x2 = 0 ∈K[x1, x2]/I

and x1, x2 ≠ 0. Geometrically, the prime ideals ⟨x1⟩ and ⟨x2⟩
correspond to the coordinate axes and ⟨x1 ⋅ x2⟩ to their union

V (x1 ⋅ x2) = V (x1) ∪ V (x2)

2) The ideal ⟨x2 − x2
1⟩ ⊂K [x1, x2] is a prime ideal, since

K [x1, x2] / ⟨x2 − x2
1⟩ → K[t]
x1 ↦ t
x2 ↦ t2

is an isomorphism and K[t] is an integral domain.



2. IDEALS, VARIETIES AND STANDARD BASES 37

Figure 2.2: Reducible affine algebraic set

The ideal
I = ⟨(x2 − x

2
1) ⋅ (x1 − x

2
2)⟩

is not prime, and

V (I) = V (x2 − x
2
1) ∪ V (x1 − x

2
2),

see Figure 2.2.

In fact, any radical ideal can be written as an intersection of
prime ideals, more generally, any ideal as an intersection of, so
called, primary ideals. We will discuss in detail an algorithm which
computes this primary decomposition.

Example 2.1.15 The ideal ⟨x1, x2⟩ ⊂K[x1, x2] is a maximal ideal,
since K[x1, x2]/ ⟨x1, x2⟩ ≅K is a field.

See also the Exercises 2.5 and 2.6.
So the bottom line is: Any geometric problem concerning affine

algebraic sets, can be translated into a problem concerning ideals
in polynomial rings.

2.2 Introduction to the Ideal Member-

ship Problem and Gröbner Bases

Suppose we want to obtain information about a variety V (I) ⊂
An(K) specified by an ideal I = ⟨f1, . . . , fs⟩ ⊂ K[x1, . . . , xn] which
again is given by generators f1, . . . , fs ∈ K[x1, . . . , xn]. For exam-
ple, we may want to determine, whether V (I) is contained in the
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hypersurface V (f). Equivalently, we have to determine whether
f ∈ ⟨f1, . . . , fs⟩. This question is called the ideal membership
problem and appears as a fundamental buildung block in many
more advanced algorithms.

Example 2.2.1 Consider the twisted cubic curve C = V (I) defined
by I = ⟨y − x2, z − x3⟩, see Figure 2.3. By definition, C is contained

Figure 2.3: Twisted cubic

in the hypersurfaces V (y − x2) and V (z − x3). However, is it also
contained in the hypersurface V (z − xy)? Figure 2.4suggests yes,

Figure 2.4: Surface containing the twisted cubic

and we easily find a representation

z − xy = (−x) ⋅ (y − x2) + 1 ⋅ (z − x3) .

How to find such a representation in a systematic way?
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Before solving the ideal membership problem in general, let us
first discuss two special settings, the linear and the univariate case.

Example 2.2.2 Let f1, . . . , fs, f ∈ K[x1, . . . , xn] be linear. Then
testing f ∈ I = ⟨f1, . . . , fs⟩ is easy and can be done in the following
two steps:

1) Apply Algorithm 1.5.1 to obtain linear equations g1, . . . , gr in
row echelon form, so L(g1) > ... > L(gr).

2) For i = 1, . . . , r do

If L(f) = L(gi) then

f = f − LC(f)
LC(gi)gi

If f = 0 then return true else return false.

As a second special case, consider higher degree equations in a
single variable. The polynomial ring K[x] in one variable over a
field K is an example of a Euclidean domain:

Definition 2.2.3 A Euclidean domain is an integral domain R
together with a map (called Euclidean norm)

d ∶ R/ {0}Ð→ N0

such that for any a, b ∈ R/ {0} there exist g, r ∈ R with

1) a = g ⋅ b + r and

2) r = 0 or d (r) < d (b).

Example 2.2.4 The ring of integers Z with d (n) = ∣n∣ and the
polynomial ring K[X] in one variable X over a field K with d (f) =
deg (f) is Euclidean.

There are many more Euclidean domains, for example, Z [i]
with

d (a1 + i ⋅ a2) = ∣a1 + i ⋅ a2∣
2
= a2

1 + a
2
2.

The Euclidean algorithm given in Theorem 1.2.2 and its proof
carry over directly to any Euclidean domain by replacing the abso-
lute value by d.

Theorem 2.2.5 Euclidean domains are principal ideal domains
(any ideal is principal, that is, generated by a single element).
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Proof. Let I ⊂ R be an ideal in a Euclidean domain. The ideal
I = ⟨0⟩ is principal. Otherwise, there is a non-zero b ∈ I with d (b)
minimal. Let a ∈ I be arbitrary and a = g ⋅ b + r with r = 0 or
d (r) < d (b). By a, b ∈ I also r ∈ I. As d(b) was chosen minimal, we
get r = 0 and, hence, a ∈ ⟨b⟩. This proves I ⊂ ⟨b⟩ ⊂ I.

Corollar 2.2.6 If R is a principal ideal domain, and f1, . . . , fs ∈ R,
then

⟨f1, . . . , fs⟩ = ⟨gcd (f1, . . . , fs)⟩

Proof. As R is a principal ideal domain,

⟨f1, . . . , fs⟩ = ⟨d⟩

with d ∈ R, hence d ∣ fi for all i. On the other hand, there are xi ∈ R
with

d = x1f1 + ... + xsfs.

So every divisor of all fi divides d. Hence

d = gcd (f1, . . . , fs) .

Recall that the gcd is only unique up to units in R.
Hence, the ideal membership problem translates into the follow-

ing characterization

f ∈ ⟨f1, . . . , fs⟩ ⇐⇒ gcd (f1, . . . , fs) divides f .

Example 2.2.7 We test whether

x3 + x ∈ I = ⟨x4 − 1, x4 − 3x2 − 4⟩ ⊂ Q[x]

The Euclidean algorithm yields

x4 − 3x2 − 4 = 1 ⋅ (x4 − 1) + (−3x2 − 3)
x4 − 1 = x2 ⋅ (x2 + 1) + (−x2 − 1)

= (x2 − 1) ⋅ (x2 + 1) + 0

hence
I = ⟨x2 + 1⟩

and division with remainder

x3 + x = x ⋅ (x2 + 1) + 0,

shows that, x3 + x ∈ I.

So what about the general case?
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Example 2.2.8 Suppose we want to check whether

x2 − y2 ∈ ⟨x2 + y, xy + x⟩ .

In order to do division with remainder, we have to decide which
term of a polynomial is the lead term. Ordering by degree is not
sufficient, consider xy2 + x2y. For example, we could order the
monomials in a lexicographic way, that is, like the words in a tele-
phone book. Then

L(x2 + y) = x2 L(xy + x) = xy

and the usual strategy for division with remainder would give

x2 − y2 = 1 ⋅ (x2 + y) + (−y2 − y)
x2 + y
−y2 − y

The lead terms we write in bold face red. So the remainder is −y2−
y ≠ 0, however

x2 − y2 = −y (x2 + y) + x (xy + x) ∈ ⟨x2 + y, xy + x⟩ .

The problem is caused by the cancelling of the lead terms in this
expression. How to resolve the problem?

Simply add to the set of generators all polynomials, which can
be obtained by canceling lead terms. The result is what is called a
Gröbner basis. In the example we would add x2 − y2 and then

−y2 − y = (x2 − y2) + (−1) ⋅ (x2 + y).

Finally, we could get rid of x2 − y2 or x2 + y as it is sufficient to
keep one generator for each possible lead monomial. This results in
a minimal Gröbner basis

x2 − y2, xy + x, y2 + y

or
x2 + y, xy + x, y2 + y.

The second one is the unique reduced Gröbner basis, which can
be obtained by removing terms in tail(f) = f − LT(f) which are
divisable by some lead monomial. For any of these Gröbner bases,
the division of x2 − y2 will give remainder zero: For the first one
this is trivial, since x2 − y2 is already an element of the Gröbner
basis. For the second one, we can continue the above calculation,
resulting in the expression

x2 − y2 = 1 ⋅ (x2 + y) + (−1) ⋅ (y2 + y) + 0

with remainder 0.
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Indeed, we will show in general, that when dividing f by a
Gröbner basis g1, . . . , gr, division will give remainder zero if and
only if f ∈ ⟨g1, . . . , gr⟩. We begin by formalizing this concept:

2.3 Monomial Orderings

For monomials we use multi-index notation xα = xα1
1 ⋅ ... ⋅ xαnn with

the exponent vector α = (α1, . . . , αn) ∈ Nn
0 .

Definition 2.3.1 A monomial ordering (or semigroup or-
dering) on the semigroup of monomials in the variables x1, . . . , xn
is an ordering > with

1) > is a total ordering

2) > respects multiplication, that is,

xα > xβ ⇒ xαxγ > xβxγ

for all α,β, γ.

Definition and Theorem 2.3.2 A global ordering is a mono-
mial ordering > with the following equivalent properties

1) > is a well ordering

(that is, any non-empty set of monomials has a smallest ele-
ment)

2) xi > 1 ∀i.

3) xα > 1 for all 0 ≠ α ∈ Nn
0 .

4) If xβ ∣ xα and xα ≠ xβ then xα > xβ

(that is, > refines divisibility).

If xi < 1 ∀i, then > is called a local ordering.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are easy, see
Exercise 2.7. With respect to (4) ⇒ (1), we have to prove that
any non-empty set of monomials has only finitely many minimal
elements with respect to divisibility. Then, by assumption (4) we
only have to consider those minimal elements, and, since > is a total
ordering, among them there is a smallest.
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Lemma 2.3.3 (Dickson, Gordan) Any non-empty set of mono-
mials in the variables x1, . . . , xn has only finitely many minimal
elements with respect to divisibility.

Proof. Let M ≠ ∅ be a set of monomials in the variables x1, . . . , xn,
and ⟨M⟩ ⊂ K[x1, . . . , xn] the ideal generated by the elements of
M . By the Hilbert basis theorem 2.1.7 we have ⟨M⟩ = ⟨f1, . . . , fs⟩
with polynomials fi = ∑

u
j=1 ri,jmj where ri,j ∈ K[x1, . . . , xn] and

m1, . . . ,mu ∈M . Hence

⟨M⟩ ⊂ ⟨m1, . . . ,mu⟩ ⊂ ⟨M⟩ .

Among the m1, . . . ,mu consider the minimal elements with respect
to divisibility.

The ideal we have encountered in the proof is an example of a
monomial ideal:

Definition 2.3.4 An ideal I ⊂ K[x1, . . . , xn] is called a mono-
mial ideal, if it is generated by monomials.

Corollar 2.3.5 Every monomial ideal has a unique set of mini-
mal generators consisting of monomials.

Proof. See the proof of Lemma 2.3.3 (or apply the lemma to the
set of monomials in the ideal).

In the proof we have also encountered the following trivial, but
important, observation:

Lemma 2.3.6 Let I = ⟨M⟩ be a monomial ideal generated by the
monomials in M . If f ∈ I, then every term of f is in I.

In particular, if f ∈ I is a monomial, then there is an m ∈ M
with m ∣ f .

Proof. If f = ∑
u
j=1 rjmj ∈ I with rj ∈ K[x1, . . . , xn] and mj ∈ M ,

any term of f is a term of some (perhaps several) rjmj and hence
a multiple of some mj.

We discuss some specific monomial orderings, there are many
more. First note:

Example 2.3.7 In one variable all global orderings are equivalent
to the ordering defined by x > 1, all local orderings to that defined
by x < 1.

Definition 2.3.8 The following definitions yield global monomial
orderings:
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1) Lexicographical ordering:

xα > xβ ⇐⇒ the leftmost nonzero entry of α − β is positive.

In Singular this ordering is abbreviated as lp.

2) Degree reverse lexicographical ordering:

xα > xβ ⇔ degxα > degxβ or degxα = degxβ and ∃1 ≤ i ≤ n ∶
αn = βn, . . . , αi+1 = βi+1, αi < βi.

In Singular this ordering is abbreviated as dp.

An example of a local ordering is the negative lexicographical
ordering:

xα > xβ ⇐⇒ the leftmost nonzero entry of α − β is negative.
In Singular this ordering is abbreviated as ls.

The degree reverse lexicographical ordering usually gives a bet-
ter performance than the lexicographical one. This is especially
apparent if we are computing a Gröbner basis of an ideal which
is homogeneous, that is, which can be genereated by homogeneous
polynomials. Recall that a polynomial is called homogeneous if
all its monomials have the same degree. Note, that a homogeneous
ideal has a lot of non-homogeneous elements.

The lexicographical ordering is nevertheless very important, since
it has the so called elimination property, that is, it allows one to
bring polynomial systems into a triangular form. We will come
back to this property later.

Example 2.3.9 For lp on the monomials in x, y, z we have (iden-
tifying monomials and exponent vectors)

x = (1,0,0) > y = (0,1,0) > z = (0,0,1)

xy2 = (1,2,0) > (0,3,4) = y3z4

x3y2z4 = (3,2,4) > (3,1,5) = x3y1z5

on the other hand, for dp we get

x = (1,0,0) > y = (0,1,0) > z = (0,0,1)

xy2 = (1,2,0) < (0,3,4) = y3z4

x3y2z4 = (3,2,4) > (3,1,5) = x3yz5

and for ls

x = (1,0,0) < y = (0,1,0) < z = (0,0,1)

xy2 = (1,2,0) < (0,3,4) = y3z4

x3y2z4 = (3,2,4) < (3,1,5) = x3yz5
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In Singular we can compare monomials as follows:
ring R=0,(x,y,z),lp;

x>y;
1

y>z;
1

xy2>y3z4;
1

x3y2z4>x3yz5
1

ring R=0,(x,y,z),dp;

x>y;
1

y>z;
1

xy2>y3z4;
0

x3y2z4>x3yz5
1

ring R=0,(x,y,z),ls;

1>z;
1

z>y;
1

y>x;
1

xy2>y3z4;
0

x3y2z4>x3yz5
0

Our definitions in the linear and univariate case generalize di-
rectly:

Definition 2.3.10 With respect to a given monomial ordering >,
for any polynomial 0 ≠ f = ∑α cαx

α the leading monomial is the
largest monomial xα with cα ≠ 0 and is denoted by L (f). Further-
more, we denote by LC(f) = cα the leading coefficient, and by
LT (f) = cαxα the leading term. For f = 0 we set L(0) = LT (0) =
LC(0) = 0.

Example 2.3.11 Using lp we have

L(5x2y + yx2) = x2y.
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In Singular we compute the lead term, monomial and coeffi-
cient as follows:
ring R=0,(x,y,z),lp;

poly f = 5x2y+xy2;

lead(f);

5x2y

leadcoef(f);

5

leadmonom(f);

x2y

Definition 2.3.12 A monomial ordering > is called a weighted
degree ordering if there is some w ∈ Rn with non-zero entries
such that

wα > wβ ⇒ xα > xβ.

Example 2.3.13 If > is any monomial ordering and w ∈ Rn, then
>w given by

xα >w x
β⇔ wα > wβ or (wα = wβ and xα > xβ)

is a monomial ordering.
The ordering >, which takes over if the w-weights of xα and xβ

are equal, is called tie-break ordering.
By construction, >w is a weighted degree ordering, it is global if

wi > 0 ∀i and it is local if wi < 0 ∀i.

For the purpose of explicit computations, which will only involve
a finite number of monomials, we can represent any monomial or-
dering by a weight vector:

Proposition 2.3.14 Given a monomial ordering > and a finite set
M of monomials in the variables x1, . . . , xn, there is a weight vector
w ∈ Zn with

xα > xβ ⇐⇒ w ⋅ α > w ⋅ β

for all xα, xβ ∈M .
We can choose w such that wi > 0 if xi > 1 and wi < 0 if xi < 1.

Proof. Consider

D> ∶= {α − β ∈ Zn ∣ xα > xβ} .

If α1 − β1, α2 − β2 ∈D> then

xα1+α2 = xα1xα2 > xβ1xα2 > xβ1xβ2 = xβ1+β2 ,
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hence
δ1, δ2 ∈D>⇒ δ1 + δ2 ∈D>.

So for all λi ∈ N and δi ∈D>

∑iλiδi ∈D>.

As 0 ∉D>, we get ∑iλiδi ≠ 0 for all δi ∈D> and λi ∈ Q>0, hence

0 ∉ convHull(D>).

Here for a set of vectors V ⊂ Zn, we write

convHull(V ) = {∑
r
i=1λiδi ∣ δi ∈ V , λi ∈ Q≥0, ∑

r
i=1λi = 1}

For an example in Figure 2.5 the grey area is the convex hull of the
black points. So also for

Figure 2.5: A convex hull

DM
> ∶= {α − β ∈ Zn ∣ xα, xβ ∈M , xα > xβ}

we have
0 ∉ convHull(DM

> ).

Thus there is a w ∈ Zn such that convHull(DM
> ) is contained in

the half space where the linear form δ ↦ wδ takes positive values.
Hence,

wδ > 0 for all δ ∈D>.

For the second statement observe: This w satisfies wi > 0 if
xi > 1 and wi < 0 if xi < 1, provided that 1, x1, . . . , xn ∈M .

Note that this representation of > via scalar weights obtained
from the linear form w⋅ is in general not valid for comparing arbi-
trary monomials (in one variable it is). However one can represent
any monomial ordering in n variables by using a vector valued lex-
icographic comparison

Example 2.3.15 For the lexicographical ordering > in the vari-
ables x1, x2 and the set of all monomials M of degree ≤ 4, the set
DM

> is plotted in Figure 2.6.The figure also shows the line wδ = 0,
where w is a weight vector representing lp on all monomials of de-
gree ≤ 4. For more examples see Exercise 2.9.
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Figure 2.6: DM
> for the ordering lp and the set M of monomial of

degree ≤ 4

You can imagine that a Gröbner basis computation for a fixed
ideal will only involve finitely many monomials due to the Noethe-
rian property of the polynomial ring. The equivalent weight vectors
w form a cone and these cones fit nicely together in what is called
the Gröbner fan (that is, the intersection of two such cones is
again one of the cones). Figure 2.7 shows the Gröbner fan clas-
sifying the non-equivalent weight vectors for f = x + y + 1 and the
initial term of each cone. Given a weight-vector w, the initial term
inw(f) is the sum of all terms of f with maximal w-weight. Then
the Gröbner fan of ⟨f⟩ consists of the closures of cones

{w ∣ inw(f) = g}

for any possible initial form g. These cones are given by linear
inequalities. As an exercise determine these inequalities. The def-
inition of the Grönber fan can be generalized to ideals with more
than one generator, however to do this, one requires Gröbner basis
techniques.

If you have heard about tropical geometry, the tropical variety
of an ideal can be considered as a subfan of the Gröbner fan. In the
example, it consists of those faces such that inw(f) is not a mono-
mial. So the three black half-lines in the figure form the tropical
variety of a line.
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Figure 2.7: Gröbner fan of the line.

2.4 Monomial Orderings and Localiza-

tions

Monomial orderings are closely related to the concept of localiza-
tions, which again have and important geometric interpretation.

Definition 2.4.1 A local ring is a ring which has exactly one
maximal ideal.

Definition 2.4.2 Let R be a ring. Given a multiplicatively closed
set S ⊂ R, that is, a set with 1 ∈ S and

s1, s2 ∈ S ⇒ s1 ⋅ s2 ∈ S

the localization of R with respect to S is the ring

S−1R ∶= {
r

s
∣ r ∈ R, s ∈ S}

where r
s is the equivalence class of all (r′, s′) with respect to the

equivalence relation

(r, s) ∼ (r′, s′)⇐⇒ ∃q ∈ S with q(rs′ − r′s) = 0,

and addition and multiplication are defined by the usual formulas
for calculating with fractions.

Example 2.4.3 1) With S = Z/{0},

Q = S−1Z.
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2) More generally we can construct in this way the quotient field
Q(R) of an integral domain R, for example the function field

K(x1, . . . , xn) = Q(K[x1, . . . , xn])

over a field K.

3) If P ⊂ R is a prime ideal in a ring R, then S = R/P is
multiplicatively closed and we write

RP = S−1R

for the localization of R at the prime ideal P . The ring
S−1R is a local ring with maximal ideal

P ⋅RP = {
r

s
∣ r ∈ P, s ∉ P} .

Remark 2.4.4 If R is Noetherian then S−1R is also Noetherian.

We leave the details as an easy exercise. Geometrically,localization
at a prime ideal corresponds to investigating an algebraic set at lo-
cally at P :

Example 2.4.5 Consider the curve C = V (I) ⊂ A2(K) defined by
I = ⟨(x − 1) ⋅ y⟩ ⊂ R = K[x, y]. In the localization at the maximal
ideal P = ⟨x, y⟩ ⊂ R we have that

I ⋅RP = ⟨y⟩

since x − 1 ∉ P is a unit in RP . So locally at the point (0,0) the
curve C looks like a line, whereas at the point (1,0) it looks like the
intersection of two line, see Figure 2.8.

Example 2.4.6 If K is a field and > is a monomial ordering on
the semigroup of monomials in x1, . . . , xn, then

S> = {u ∈K[x1, . . . , xn] ∣ LM(u) = 1}

is multiplicatively closed. We write

K[x1, . . . , xn]> = S
−1K[x1, . . . , xn]

for the corresponding localization of the polynomial ring with respect
to >.

By Definition and Theorem 2.3.2, > is global if and only if S> =
K∗, that is

K[x1, . . . , xn]> =K[x1, . . . , xn].

On the other hand if > is local then

K[x1, . . . , xn]> =K[x1, . . . , xn]⟨x1,...,xn⟩.
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Figure 2.8: Local properties of union of two lines

We can use this construction to describe localizations at arbi-
trary coordinate planes:

Example 2.4.7 If > is a local ordering on the monomials in x1, . . . , xn,
then

K[x1, . . . , xn, y1, . . . , ym]⟨x1,...,xn⟩ =K(y1, . . . , ym)[x1, . . . , xn]>.

The proof is Exercise 2.10.

We can extend the notion of a lead monomial to K[x1, . . . , xn]>
in the following way. This will lead to a Gröbner bases theory in
K[x1, . . . , xn]>, the so called theory of standard bases.

Definition 2.4.8 If f ∈ K[x1, . . . , xn]> there is a polynomial u ∈
K[x1, . . . , xn] with

LT(u) = 1 and u ⋅ f ∈K[x1, . . . , xn].

We define
L(f) ∶= L(u ⋅ f).

In the same way, we define

LC(f) ∶= LC(u ⋅ f)

LT(f) ∶= LT(u ⋅ f)

tail(f) ∶= tail(u ⋅ f).

In Exercise 2.13 we show that these definitions are independent
of the choice of u.
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2.5 Division with Remainder and Stan-

dard Bases

Fix a monomial ordering onK[x1, . . . , xn] and writeR =K[x1, . . . , xn]>.
If we consider a global monomial ordering, that is, R =K[x1, . . . , xn],
then it is pretty clear, how to do division with remainder. Algo-
rithm 2.5.1 divides f ∈ R by g1, . . . , gs ∈ R.

Algorithm 2.5.1 Division with remainder

Input: f ∈ R, g1, ..., gs ∈ R, > be a global ordering on the monomials
of R.

Output: An expression

f = q + r = ∑
s
i=1aigi + r

such that L(r) is not divisible by any L(gi).
1: q = 0
2: r = f
3: while r ≠ 0 and L(gi) ∣ L(r) for some i do
4: Cancel the lead term of r:
5: a = LT (r)

LT (gi)
6: q = q + a ⋅ gi
7: r = r − a ⋅ gi

Proof. In every step the lead term of r becomes smaller with
respect to >, so the algorithm terminates, since > is a well-ordering.

Example 2.5.1 Using lp divide x2y + x by y − 1 and x2 − 1.

x2y + x = x2 (y − 1) + 1 ⋅ (x2 − 1) + x + 1
x2y − x2

x2 + x
x2 − 1
x + 1

Remark 2.5.2 The assumption that > is global is necessary for the
termination: If we divide x by x−x2 using the local ordering x < 1,
then Algorithm 2.5.1 will compute

x = 1 ⋅ (x − x2) +x2

= (1 + x) ⋅ (x − x2) +x3

⋮

= (∑
∞
i=0x

i) ⋅ (x − x2) + 0
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that is, the geometric series expansion of

x

x − x2
=

1

1 − x
= ∑

∞
i=0x

i.

So the algorithm works as expected, but does not give an answer
after finitely many steps. We will come back to this (however, the
solution is pretty obvious, clear the denominator 1 − x).

We will now show that Algorithm 2.5.1 solves the ideal mem-
bership problem, provided we divide by a Gröbner basis, and we
will develop a modified version of the algorithm that will also do
the job for non-global orderings.

Definition 2.5.3 Given a monomial ordering > and a subset G ⊂
R, we define the leading ideal of G as

L(G) = L>(G) = ⟨L(f) ∣ f ∈ G/{0}⟩ ⊂ R,

the monomial ideal generated by the lead monomials. If the choice
of > is clear, we also write L(G).

Given an ideal I the ideal L(I) will contain all possible lead
monomials obtainable by cancelling lead term, hence we define:

Definition 2.5.4 (Standard and Gröbner bases) Let I be an
ideal and > a monomial ordering. A finite set

G ⊂ I

with 0 ∉ G is called a standard basis of I with respect to >, if

L(G) = L(I).

If > is global, then we call a standard basis also a Gröbner basis.

Note that the inclusion ⊂ is true for any subset. The existence
of a standard basis is easy:

Theorem 2.5.5 Every ideal I ⊂ R has a standard basis.

Proof. Since L(I) is finitely generated, L(I) = ⟨m1, . . . ,ms⟩ with
monomials mi. Furthermore, mi is divisible by some L(gi) for some
gi ∈ I, see Lemma 2.3.6. Hence

L(I) = ⟨L(g1), . . . , L(gs)⟩ ,
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so g1, . . . , gs form a standard basis of I.
From the definition it is not clear whether a standard basis of

I is indeed a set of generators of I. Solving the ideal membership
problem will answer also this question.

Our goal will be to handle the global and non-global setting
in an uniform way. We first formlize the abstract properties of
Algorithm 2.5.1 in the notion of a normal form.

Definition 2.5.6 Given a list G = (g1, . . . , gs) ⊂ R, a normal
form is a map NF(−,G) ∶ R → R with

1) NF(0,G) = 0.

2) If NF(f,G) ≠ 0 then L(NF(f,G)) ∉ L(G).

3) For every 0 ≠ f ∈ R there are ai ∈ R with

f −NF(f,G) = ∑
s
i=1aigi

and L(f) ≥ L(aigi) for all i with aigi ≠ 0. Such an expression
we call a standard represenation of f .

We also say that NF is a normal form, if NF(−,G) is a normal
form for all G.

As discussed above, in the non-global setting we will have to
relax property (3) allowing for clearing denominators:

Definition 2.5.7 A weak normal form is a map NF(−,G) ∶
R → R with condition (1) and (2) of the previous definition and

3’) For every 0 ≠ f ∈ R there is a unit u ∈ R∗ such that u ⋅ f has
a standard representation.

A weak normal form is called polynomial weak normal form
if for every f ∈K[x1, . . . , xn] and list G ⊂K[x1, . . . , xn] there exists
a unit u ∈ R∗∩K[x1, . . . , xn] such that there is a standard expression

u ⋅ f −NF(f,G) = ∑
s
i=1aigi

with ai ∈K[x1, . . . , xn].

Remark 2.5.8 1) Any normal form is a weak normal form.

2) Note that any weak normal form induces a normal form by
division with u. However only if > is global, i.e., R∗ = K∗,
this normal form will be polynomial.
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Since in the applications we can usually work with polynomial
data, we will use polynomial weak normal forms for local orderings,
and normal forms for global orderings.

Lemma 2.5.9 Given a list G = (g1, . . . , gs) and any order of pref-
erence of the gi in the division, Algorithm 2.5.1 yields a normal
form NF(−,G). It is called the Buchberger normal form.

Proof. We map f to NF(f,G) ∶= r. If the algorithm returns re-
mainder r ≠ 0 then L(r) is not divisible by any L(gi), so L(r) ∉
L(G) by Lemma 2.3.6. Condition (3) is clear, since in every itera-
tion of the algorithm L(a ⋅ gi) ≤ L(f).

Using standard bases and a weak normal form, we can now
decide the ideal membership problem:

Theorem 2.5.10 (Ideal membership) Let I ⊂ R be an ideal and
f ∈ R. If G = {g1, . . . , gs} is a standard basis of I and NF is a weak
normal form, then

f ∈ I ⇐⇒ NF(f,G) = 0.

Proof. Consider a standard expression uf = ∑i aigi + r with r =
NF(f,G), ai ∈ R and u ∈ R∗. If r = 0 then uf = ∑i aigi ∈ ⟨G⟩ ⊂ I,
hence f ∈ I. On the other hand, if r ≠ 0 then by Definition 2.5.6
(2.)

L(r) ∉ L(G) = L(I).

So, by definition of the lead ideal,

r ∉ I,

hence uf = ∑i aigi + r ∉ I, so f ∉ I.

Lemma 2.5.11 If J ⊂ I ⊂ R are ideals with L(J) = L(I) then
I = J .

Proof. Let G = {g1, . . . , gs} be a standard basis of J , NF a weak
normal form, f ∈ I and uf = ∑i aigi + r a standard expression with
r = NF(f,G). So r ∈ I. If r ≠ 0, then by Definition 2.5.6 (2.)

L(r) ∉ L(G) = L(J) = L(I).

By the definition of the lead ideal, we have r ∉ I, a contradiction.
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Corollar 2.5.12 If G is a standard basis of I, then

I = ⟨G⟩ .

Proof. We have L(I) = L(G) ⊂ L(⟨G⟩) ⊂ L(I), so G is a standard
basis of ⟨G⟩ ⊂ I and L(⟨G⟩) = L(I). Equality follows from Lemma
2.5.11.

Example 2.5.13 The generators of the ideal I = ⟨x2 − 1, y − 1⟩ al-
ready form a Gröbner basis with respect to lp: Since x ∉ L(I) (Ex-
ercise) we have

L(I) = ⟨x2, y⟩ .

Corollar 2.5.14 For any monomial ordering >, the ring

R =K[x1, . . . , xn]>

is Noetherian.

Proof. By Theorem 2.5.5 any ideal in R has a standard basis,
which consists out of finitely many elements, and by Corollary
2.5.12 this standard basis generates the ideal.

In particular, this proves again that K[x1, . . . , xn] is Noetherian,
see Corollary 2.1.8.

Of course, the result of division with remainder depends on
the monomial ordering. But, even if we fix a monomial ordering
and divide by a Gröbner basis, the result may not be uniquely
determined in the sense that the remainder depends on the order
of preference of the divisors gi in the division algorithm:

Example 2.5.15 At every step of Algorithm 2.5.1, there can be
several choices of gi such that L(gi) ∣ L(f). We divide x2y + x by
the Gröbner basis G = {y − 1, x2 − 1}, using lp as in Example 2.5.1.
However we now prefer x2 − 1 over y − 1 when possible:

x2y + x = y ⋅ (x2 − 1) + x + y
x2y − y
x + y

So depending on the choice made, the remainder will be x + 1 or
x + y.

To have a uniquely determined remainder, we proceed as follows:
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Definition 2.5.16 An element f ∈ R is called reduced with re-
spect to a set G ⊂ R, if no term of the power series expansion of f
is contained in L(G).

A normal form NF is called reduced normal form, if NF(f,G)
is reduced with respect to G for all f and G.

Algorithm 2.5.2 yields a reduced normal form, the reduced
Buchberger normal form.

Algorithm 2.5.2 Reduced division with remainder

Input: f ∈ R, g1, ..., gs ∈ R, > be a global ordering on the monomials
of R.

Output: An expression

f = q + r = ∑
s
i=1aigi + r

such that not term of r is divisible by any L(gi).
1: q = 0
2: r = 0
3: h = f
4: while h ≠ 0 do
5: if L(gi) ∣ L(h) for some i then
6: Cancel the lead term of h:
7: a = LT (h)

LT (gi)
8: q = q + a ⋅ gi
9: h = h − a ⋅ gi
10: else
11: Put the lead term into the remainder:
12: r = r +LT (h)
13: h = h −LT (h)

Example 2.5.17 So, also putting terms into the remainder in the
intermediate steps, we can continue in Example 2.5.15:

x2y + x = y ⋅ (x2 − 1) +x + 1 ⋅ (y − 1) + 1
x2y − y
x + y
y
y − 1
1

which leads to the same remainder x+1 as in Example 2.5.1. Indeed,
the remainder is now unique provided we divide by a Gröbner basis:
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Theorem 2.5.18 Let > be a global ordering, I ⊂ R an ideal, f ∈ R
and G a Gröbner basis of I. If NF is a reduced normal form, then
NF(f,G) is uniquely determined by >, f and I. We then also write
NF(f, I).

Proof. Write G = {g1, . . . , gs} and suppose that

f = ∑
s
i=1aigi + r

= ∑
s
i=1a

′
igi + r

′

Then
r − r′ = ∑

s
i=1(ai − a

′
i)gi ∈ ⟨G⟩ = I

(using Corollary 2.5.12). So, if r − r′ ≠ 0, then L(r − r′) ∈ L(I) =
L(G). Since L(r − r′) is a monomial of r or r′, this would mean
that r or r′ is not reduced with respect to G.

Example 2.5.19 In Singular we can compute the reduced Buch-
berger normal form in Example 2.5.17 by:
ring R=0,(x,y),lp;

ideal I = x2-1,y-1;

We first check that the generators of I form a Gröbner basis:
I=std(I);

I;

I[1]=x-1

I[2]=x2-1

reduce(x2y+x,I);

x+1

The non-reduced version is called by reduce(-,-,1).
Singular makes the choices in the algorithms for you in a clever
way, however, you cannot influence this.
The standard expression of f respectively uf including the remain-
der and the unit u is returned by the command division (in the
stated order):
division(x2y+x,I);

[1]:

[1,1]=x2

[2,1]=1

[2]:

[1]=x+1

[3]:

[1,1]=1

Since we are working with a global ordering, Singular chooses the
unit to be 1.
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Remark 2.5.20 Even when using a reduced normal form and a
Gröbner basis, although the remainder is unique, the generated ex-
pression in the generators may not be. In the Examples 2.5.1 and
2.5.17 we obtain

x2y + x = y ⋅ (x2 − 1) + 1 ⋅ (y − 1) + x + 1

and
x2y + x = x2 (y − 1) + 1 ⋅ (x2 − 1) + x + 1

respectively.
When dividing f by G = (g1, . . . , gs), we can obtain a unique

expression
f = ∑

s
i=1aigi + r

by requiring that no term of aiL(gi) is divisible by any L(gj) for
j < i.

In the example, the first expression would be returned for G =
(x2 − 1, y − 1), and the second for G = (y − 1, x2 − 1).

2.6 Computing Standard Bases

In Section 2.2 we have already seen the basic idea for computing
a Gröbner basis of an ideal. We will now turn this idea into an
algorithm. The formulation will also be applicable in the case of
standard bases. So again write R =K[x1, . . . , xn]> for a fixed mono-
mial ordering >.

Definition 2.6.1 The syzygy polynomial or S-polynomial of
f, g ∈ R is defined as

spoly(f, g) =
lcm(L(f), L(g))

LT (f)
f −

lcm(L(f), L(g))

LT (g)
g ∈ R.

Doing all possible cancelations of lead terms, Algorithm 2.6 com-
putes a standard basis.



2. IDEALS, VARIETIES AND STANDARD BASES 60

Algorithm 2.6.1 Buchberger

Input: I = ⟨g1, ..., gs⟩ ⊂ R an ideal, > a monomial ordering, and NF
a weak normal form.

Output: A standard basis of I with respect to >.
1: G = {g1, ..., gs}
2: repeat
3: H = G
4: for all f, g ∈H do
5: r = NF(spoly(f, g),H)
6: if r ≠ 0 then
7: G = G ∪ {r}
8: until G =H

Proof. If r ≠ 0 then L(r) ∉ L(H) by Definition 2.5.6(2.), hence

L(H) ⫋ L(H ∪ {r}).

So, by the Noetherian property of R, the algorithm terminates with
NF(spoly(f, g),H) = 0 for all f, g ∈H.

To show that the final result is a standard basis, we prove:

Theorem 2.6.2 (Buchberger’s criterion) If I ⊂ R is an ideal,
NF a weak normal form and

G = {g1, . . . , gs} ⊂ I

a set of elements of I with 0 ∉ G, then the following conditions are
equivalent:

1) G is a standard basis of I.

2) NF(f,G) = 0 for all f ∈ I.

3) I = ⟨G⟩ and NF(spoly(gi, gj),G) = 0 for all i ≠ j.

Proof. (1)⇒ (2)⇒ (3): If G is a standard basis we get NF(f,G) =
0 for all f ∈ I by Theorem 2.5.10. For the second implication, note
that spoly(gi, gj) ∈ I and by NF(f,G) = 0 and Definition 2.5.6(3’)
any element of I can be written in terms of the generating system G.

(2) ⇒ (1): If f ∈ I then again by NF(f,G) = 0 and Definition
2.5.6(3’) we have an expression

uf = ∑
s
i=1aigi

with a unit u and L(f) = L(uf) ≥ L(aigi) for all i. So there has
to be an i with L(f) = L(aigi), which implies that L(gi) ∣ L(f).
Hence L(f) ∈ L(G).
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(3)⇒ (1): We have to show that if f ∈ I then L(f) ∈ L(G). By
assumption there are ai ∈ R with

f = ∑
s
i=1aigi.

Clearly L(f) ≤ maxiL(aigi). If L(f) < maxiL(aigi), then some
lead terms of summands in∑

s
i=1aigi cancel, say L(ai1gi1) and L(ai2gi2).

By assumption we have a division expression

0 = ũ ⋅ spoly(gi1 , gi2) −∑
s
i=1cigi

with a unit ũ. Such a relation is called a syzygy. Subtracting a
multiple of this equality from the equality f = ∑

s
i=1aigi we obtain a

new expression for f with smaller maxiL(aigi). After finitely many
steps L(f) = maxiL(aigi), hence L(gi) ∣ L(f) for some i, that is,
L(f) ∈ L(G).

For the step (3) ⇒ (1) we have given more like a sketch of a
proof. The theory of standard bases for modules will enable us to
write down a very elegant proof later.

Example 2.6.3 Using Buchberger’s criterion we can easily check
that G = {x2 − 1,y − 1} is a Gröbner basis of I = ⟨G⟩ with respect
to lp: For the S-pair

s = y(x2 − 1) − x2(y − 1) = x2 − y

division with remainder gives NF(s,G) = 0:

x2 − y = 1 ⋅ (x2 − 1) − 1 ⋅ (y − 1) + 0
x2 − 1
−y + 1
−y + 1
0

Example 2.6.4 We apply Buchberger’s algorithm to compute a
Gröbner basis of

I = ⟨t2 − x, t3 − y, t4 − z⟩ ⊂ k [t, z, y, x]

for the lexicographical ordering t > z > y > x. In each step the first
column denotes the coefficients in the syzygy polynomial and the
second the (reduced) division with remainder.

↱ −tx + y ↱ −t2x + z ↱ −ty + z ↱ t3y − zx
t2 − x t t2 x −ty
t3 − y −1 t
t4 − z −1 −1 x
tx − y 1 −t3 −y
z − x2 −1 −1 x
ty − x2 1
y2 − x3 −1
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Writing this in terms of syzygies

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t2 − x
t3 − y
t4 − z
tx − y
z − x2

ty − x2

y2 − x3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

t

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t t2 + x 0 −ty
−1 0 t 0
0 −1 −1 x
1 0 0 −t3 − y
0 −1 −1 x
0 0 1 0
0 0 0 y2 − x3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

As an exercise, do the divisions with remainder and show that all
remaining syzygy polynomials reduce to 0. So a Gröbner basis of I
is given by

G = (t2 − x, t3 − y, t4 − z, tx − y,z − x2, ty − x2,y2 − x3).

However, do we need all these polynomials?

Definition 2.6.5 A standard basis G = {g1, . . . , gs} is called min-
imal, if L(gi) ∤ L(gj) for all i ≠ j.

If, in addition, LC(gi) = 1 and tail(gi) is reduced with respect
to G for all i, then, G is called reduced.

Remark 2.6.6 From any standard basis we can obtain a minimal
one by deleting elements.

Proof. Given a standard basis G = {g1, . . . , gs}, by Lemma 2.3.3,
the set {L(gi) ∣ i} has a unique subset of minimal elements with
respect to divisibility. This subset also generates L(G), and, hence,
the corresponding gi form a standard basis.

Remark 2.6.7 A minimal standard basis is minimal in the sense
that we cannot delete any element without loosing the standard basis
property.

Theorem 2.6.8 Let > be a global ordering. Every ideal has a
unique reduced Gröbner basis (up to permutation of the elements).

Proof. Suppose G and H are reduced Gröbner bases of the ideal
I. By

L(G) = L(I) = L(H)

and since G and H are minimal, for any g ∈ G there is an h ∈ H
with L(g) = L(h). Then

s = g − h = tail(g) − tail(h)



2. IDEALS, VARIETIES AND STANDARD BASES 63

and, as no term of the tails is divisible by any lead term, we have

s = NF(s,G).

Finally s = NF(s,G) = 0 by the Ideal Membership Theorem 2.5.10
and s ∈ I.

Remark 2.6.9 Fix a global ordering >. If G = {g1, . . . , gs} is min-
imal and NF is a reduced normal form, then H = {h1, . . . , hs} with

hi = NF(gi, (g1, . . . , gi−1, gi+1, . . . , gs))

is the reduced Gröbner basis of I.

Proof. If G is minimal, then L(gi) is not divisible by any L(gj) for
i ≠ j, so L(gi) = L(hi). By construction, tail(hi) is reduced with
respect to hj for j ≠ i. Moreover, no term of tail(hi) is divisible by
L(hi), since by Definition and Theorem 2.3.2 the global ordering
refines divisibility.

Example 2.6.10 In Example 2.6.4 a minimal Gröbner basis is

G = {t2 − x, tx − y,z − x2, ty − x2,y2 − x3}.

Example 2.6.11 For Example 2.6.4 we can compute a minimal
Gröbner basis using Singular as follows:
ring R=0,(t,z,y,x),lp;

ideal I = t2-x,t3-y,t4-z;

std(I);

[1]=y2-x3

[2]=z-x2

[3]=tx-y

[4]=ty-x2

[5]=t2-x

In this example, the result is already reduced.

Example 2.6.12 In general, the Gröbner basis returned std may
not be reduced. To force Singular to compute the reduced Gröbner
basis, we set the option redSB:
ring R=0,(x,y),lp;

ideal I = x+y,y;

std(I);

[1]=y
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[2]=x+y

option(redSB);

std(I);

[1]=y

[2]=x

2.7 The Mora Weak Normal Form

We will now construct a weak polynomial normal form. As usual
we fix a monomial ordering > on K[x1, . . . , xn] and write R =
K[x1, . . . , xn]>. As discussed in Remark 2.5.2, the Buchberger nor-
mal form for division of x by x−x2 with respect to the local ordering
on K[x] leads to computation of the geometric series

x = (∑
∞
i=0x

i) ⋅ (x − x2) + 0,

and, thus, to an infinite computation. We can resolve this issue by
clearing the denominator, arriving at the standard expression

(1 − x) ⋅ x = 1 ⋅ (x − x2) + 0

with the unit u = 1 − x. How to do this algorithmically?
Suppose we are dividing a polynomial f ∈ K[x1, . . . , xn] by a

given set of divisors G ⊂ K[x1, . . . , xn]. The idea is to proceed in
the same way as in the Buchberger normal form, but to enlarge G in
the course of the division process by the previous remainder in order
to ensure termination. Enlarging G will amount to multiplying f
by a unit: Since f (or a remainder thereof) will also appear on the
right side of a standard expression

f = a ⋅ f +∑
i

aigi + r

we bring a ⋅ f to the left side, leading to a weak normal form ex-
pression

(1 − a) ⋅ f =∑
i

aigi + r,

with unit u = 1 − a.

Example 2.7.1 When dividing x by G = {x − x2} after one itera-
tion of division with remainder we obtain the expression

x = 1 ⋅ (x − x2) + x2


