
Dilla University

Department of Mathematics

Topics In Algebra I

by

Dereje Kifle

Contents

1 Introduction to Computer Algebra 1
1.1 What is Computer Algebra? . 1
1.2 Application Areas of Computer Algebra 2
1.3 Why Should We Use Computer Algebra? 2
1.4 Some Remarks on Computer Algebra Systems and Their Implementations 5
1.5 Introduction to Programming in Singular 6

1.5.1 First Step . 6
1.5.2 Rings and standard bases . 8
1.5.3 Procedures and Libraries . 12

1.6 Numbers . 15
1.7 Extended Euclidean Algorithm for Integers 19
1.8 Groups . 25
1.9 Symbolic Integration . 29
1.10 Linear Algebra . 30
1.11 Algebraic Geometry . 32

2 Ideals, Varieties and Standard Bases 33
2.1 Ideals and Varieties . 33

Bibliography 37

i

Chapter 1

Introduction to Computer Algebra

1.1 What is Computer Algebra?

Mathematicians in the old period, say before 1850 A.D., solved the majority of math-
ematical problems by extensive calculations. A typical example of this type of mathe-
matical problem solver is Euler. So it is not astonishing that in the 18th and beginning
19th centuries many mathematicians were real wizards of computation. However, dur-
ing the 19th century the style of mathematical research changed from quantitative to
qualitative aspects. A number of reasons were responsible for this change, among them
the importance of providing a sound basis for the vast theory of analysis. But the fact
that computations gradually became more and more complicated certainly also played
its role. This impediment has been removed by the advent of modern digital computers
in general and by the development of program systems in computer algebra in particular.
By the aid of computer algebra the capacity for mathematical problem solving has been
decisively improved.

Even in our days many mathematicians think that there is a natural division of labor
between man and computer: a person applies the appropriate algebraic transformations
to the problem at hand and finally arrives at a program which then can be left to a
”number crunching” computer. But already in 1844 Lady Augusta Ada Byron, countess
Lovelace, recognized that this division of labor is not inherent in mathematical problem
solving and may be even detrimental.

A modern digital computer is a ”universal” machine capable of carrying out an ar-
bitrary algorithm, i.e. an exactly specified procedure, algebraic algorithms being no
exceptions.

Now what exactly is symbolic algebraic computation, or in other words computer
algebra? In his introduction to (Buchberger et al. 1983) R. Loos gave the following
attempt at a definition:

Computer algebra is that part of computer science which designs, analyzes, imple-
ments, and applies algebraic algorithms.

While it is arguable whether computer algebra is part of computer science or mathe-
matics, we certainly agree with the rest of the statement. In fact, in our view computer
algebra is a special form of scientific computation, and it comprises a wide range of basic
goals, methods, and applications. More formally,

1

2 1. Introduction to Computer Algebra

Definition 1.1.1. Computer Algebra is a discipline between mathematics and computer

science which deals with designing, analyzing, implementing, and applying algebraic

algorithms.

In contrast to numerical computation the emphasis is on computing with symbols rep-
resenting mathematical concepts. Of course that does not mean that computer algebra
is devoid of computations with numbers. Decimal or other positional representations
of integers, rational numbers and the like appear in any symbolic computation. But
integers or real numbers are not the sole objects. In addition to these basic numeri-
cal entities computer algebra deals with polynomials, rational functions, trigonometric
functions, algebraic numbers, etc. That does not mean that we will not need numerical
algorithms any more. Both forms of scientific computation have their merits and they
should be combined in a computational environment. For instance, in order to compute
an approximate solution to a differential equation it might be reasonable to determine
the first n terms of a power series solution by exact methods from computer algebra
before handing these terms over to a numerical package for evaluating the power series.

Summarizing, computer algebra has two fundamental goals: Provide algorithms for
computations with algebraic structures, like fields, vector spaces, rings, ideals, and mod-
ules to the computer. And use the algorithms and their implementations to solve mathe-
matical problems in theory and applications. Here, computations usually refer to exact,
that is, symbolic ones. However, in some cases, numerical computations can be helpful
in obtaining exact results.

1.2 Application Areas of Computer Algebra

Computer algebra is interdisciplinary in nature, with links to quite a number of ar-
eas in mathematics, with applications in mathematics, other branches of science, and
engineering:

• Through computer algebra methods, a number of mathematical disciplines become
accessible to experiments. This is in particular true for various parts of algebra,
number theory, and geometry.

• Modern application areas of mathematics such as cryptography, coding theory,
computer-aided-design (CAD), robotics, algebraic statistics, and algebraic biology
heavily rely on computer algebra.

1.3 Why Should We Use Computer Algebra?

Of course, there are practical problems, that can be solved by computer algebra, for
example, in cryptography, robotics, algebraic statistics, computational biology, and
physics. On the other hand, experiments with the computer allow you to get an in-
sight into theoretical problems and test conjectures. In many settings, you can even

1.3. Why Should We Use Computer Algebra? 3

obtain theoretical results by handling just a single special case by computer. Let us say,
we want to prove that the determinant of the matrix

At =

t− 1 1 −1
t t2 + 1 t+ 1
t t2 t+ 2

 ∈ C[t]3×3

is non-zero as a polynomial without computing it. For example, the determinant may
be too complicated (which is of course not the case in the example). However, it may
be possible to compute At0 for a fixed t0 ∈ C. For any t0 ∈ C, consider the substitution
map

ϕ : C[t]3×3 → C3×3

At 7→ ϕ(At) := At0

Since substitution is a ring homomorphism, it is sufficient to find one t0 such that
det At0 6= 0, for example,

detAt0 = det

−1 1 −1
0 1 1
0 0 2

 = −2 .

It follows that the determinant, as a continuous function, will be non-zero in an open
neighbourhood of t0. In fact, we then know that it is non-zero for all but finitely many
values of t, since 0 6= det At ∈ C[t] has only finitely many zeros. This means that the
determinant is non-zero on an open set in the so called Zariski topology, that is, on the
complement of the zero set of a system of polynomial equations.

In the line of this example, our main focus will be on computations in commutative
algebra, specifically on all sorts of algorithms concerned with polynomial rings. Here,
the fundamental building block is Buchberger’s algorithm for computing Gröbner bases,
which generalizes Gaussian elimination. Recall that Gaussian elimination transforms
multivariate linear systems of equations into row echelon form

2x+ y = 1
2x+ y = 1

7→ x+ 2y = −1
−3x = −3

from which we can read off the solution (x, y) = (1,−1).
Buchberger’s algorithm generalizes this idea to higher degree polynomial equations,

for example, it transforms

2x2 − xy + 2y2 − 2 = 0
2x2 − 3xy + 3y2 − 2 = 0

7→ 3y + 8x3 − 8x = 0
4x4 − 5x2 + 1 = 0

Example 1.3.1. We can do the above Gröbner basis calculation in Singular, see

Section 1.5, by the following code:

4 1. Introduction to Computer Algebra

ring R = 0, (y,x), lp;

ideal I = 2x2-xy+2y2-2, 2x2-3xy+3y2-2;

std(I);

_[1] = 4x4-5x2+1

_[2] = 3y+8x3-8x

The ring definition specifies the characteristic of the prime field (so 0 corresponds to Q),

the variables, and an ordering of the variables (lp). To make an analogy to Gaussian

elimination, by the ordering you can tell the system, in which order you want to eliminate

the variables (for example, if you want a right or left upper triangular matrix as row

echelon form). An ideal represents a system of polynomial equations, and std refers to

the term standard basis, which, in the setup considered here, is synonymous to Gröbner

basis. From the resulting system we can read off the four solutions

(x, y) = (±1, 0),

(
±1

2
,±1

)
.

The graphs of the above functions will motivate the algebraic concepts by connecting
multivariate systems of polynomial equations to the geometry of their set of solutions, the
associated algebraic variety. This connection is called algebraic geometry, an important
branch of mathematics and one of the key applications of commutative algebra. In
Chapter 2, we will give a more detailed explanation about the notion of Gröbner bases.
The following definitions are also helpful to understand this notion.

What is an Algorithm?

Definition 1.3.2. An algorithm is a set of instructions for solving a particular problem

in finitely many, well-defined steps.

In this definition, starting from a given input, the instructions describe a computation
which eventually will produce an output and terminate. The transition from one step to
the next one is not necessarily deterministic: probabilistic algorithms incorporate random
input, which may lead to random performance and random output. For example,

Algorithm 1.1 Sample Algorithm

Input: some input.

Output: some output m.

instruction

1.4. Some Remarks on Computer Algebra Systems and Their Implementations 5

What are Algebraic Algorithms?

Definition 1.3.3. Algebraic algorithms deal with algebraic objects, make us of algebraic

methods, and are based on algebraic theorems.

In this definition, objects are represented exactly and calculations are carried through
exactly (no approximation is applied at any step).

Analyzing Algorithms

One way of measuring the efficiency of an algorithm is to give asymptotic bounds on its
running time which depend on the size of the input.

Designing Algorithms

When designing algorithms, we will describe them in a somewhat informal way which
makes use of the structural conventions of a programming language. We refer to such a
description as pseudocode, see the above algorithm.

1.4 Some Remarks on Computer Algebra Systems and

Their Implementations

Computer algebra algorithms allow us to compute in and with a multitude of mathe-
matical structures. Accordingly, there is a large number of computer algebra systems
suiting different needs. There are general purpose and special purpose computer algebra
systems. Some well-known general purpose systems are commercial, whereas many of
the special purpose systems are open-source and can be downloaded from the internet
for free. General purpose systems aim at providing basic functionality for a variety of
different application areas. In addition to tools for symbolic computation, they usually
offer tools for numeric computation and for visualization.

Some of the most widely used systems are Mathematica, Maple, Derive, Reduce,
Singular, Maxima, Magma, Cocoa, GAP, Julia, Sage and MatLab.

Among these computer algebra systems Singular, Maxima, GAP, Julia and Sage
are open computer algebra systems. However, for most computations we will use the
computer algebra system Singular, which is being developed at Technical university
of Kaiserslautern (TU KL). Singular can be either downloaded or conveniently access
in an online interface, see https://www.singular.uni-kl.de:8003/.

The next section introduces Singular.

https://www.singular.uni-kl.de:8003/

6 1. Introduction to Computer Algebra

1.5 Introduction to Programming in Singular

1.5.1 First Step

Once SINGULAR is started, it awaits an input after the prompt >. Every statement
has to be terminated by ; .

23 + 5;

==> 28

All objects have a type, for example, integer variables are defined by the word int .
An assignment is made using the symbol = .

int k = 5;

Test for equality resp. inequality is done using == resp. != (or <>), where 0 represents
the boolean value FALSE , and any other value represents TRUE.

k == 5;

==> 1

k !=5 ;

==> 0

The value of an object is displayed by simply typing its name.

k;

==> 5

On the other hand, the output is suppressed if an assignment is made.

int j = k+1;

==> 6

The last displayed (!) result can be retrieved via the special symbol _ .

9 + _;// the value from k displayed above

==> 14

Text starting with // denotes a comment and is ignored in calculations, as seen in the
previous example. Furthermore Singular maintains a history of the previous lines of
input, which may be accessed by CTRL-P (previous) and CTRL-N (next) or the arrows
on the keyboard.

The whole manual is available online by typing the command help; . Documentation
on single topics, for exmaple, on intmat , which defines a matrix of integers, is obtained
by

1.5. Introduction to Programming in Singular 7

help intmat;

This will display the text of intmat , in the printed manual.
Next, we define a 3 × 3 matrix of integers and initialize it with some values, row by

row from left to right:

intmat m[3][3] = 1,2,3,4,5,6,7,8,9;

m;

A single matrix entry may be selected and changed using square brackets [and] .

m[1,2]=0;

m;

==> 1,0,3,

==> 4,5,6,

==> 7,8,9

To calculate the trace of this matrix, we use a for loop. The curly brackets { and }

denote the beginning resp. end of a block. If you define a variable without giving an
initial value, as the variable tr in the example below, Singular assigns a default value
for the specific type. In this case, the default value for integers is 0. Note that the
integer variable j has already been defined above.

int tr;

for (j=1; j <= 3; j++) { tr=tr + m[j,j]; }

tr;

==> 15

Variables of type string can also be defined and used without having an active ring.
Strings are delimited by " (double quotes). They may be used to comment the output
of a computation or to give it a nice format. If a string contains valid Singular
commands, it can be executed using the function execute. The result is the same as if
the commands would have been written on the command line. This feature is especially
useful to define new rings inside procedures.

"example for strings:";

==> example for strings:

string s="The element of m ";

s = s + "at position [2,3] is:"; // concatenation of strings by +

s , m[2,3] , ".";

==> The element of m at position [2,3] is: 6 .

s="m[2,1]=0; m;";

8 1. Introduction to Computer Algebra

execute(s);

==> 1,0,3,

==> 0,5,6,

==> 7,8,9

This example shows that expressions can be separated by , (comma) giving a list
of expressions. Singular evaluates each expression in this list and prints all results
separated by spaces.

1.5.2 Rings and standard bases

In order to compute with objects such as ideals, matrices, modules, and polynomial
vectors, a ring has to be defined first.

ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the ground
field, the second part determines the names of the ring variables, and the third part
determines the monomial ordering to be used. Thus, the above example declares a
polynomial ring called r with a ground field of characteristic 0 (i.e., the rational num-
bers) and ring variables called x, y, and z. The dp at the end determines that the
degree reverse lexicographical ordering will be used.

Other ring declarations:

ring r1 = 32003,(x,y,z),dp;

characteristic 32003, variables x, y, and z and ordering dp.

ring r2 = 32003,(a,b,c,d),lp;

characteristic 32003, variable names a, b, c, d and lexicographical ordering.

ring r3 = 7,(x(1..10)),ds;

characteristic 7, variable names x(1), ..., x(10), negative degree reverse lexicographical
ordering (ds).

ring r4 = (0,a),(mu,nu),lp;

transcendental extension of Q by a, variable names mu and nu, lexicographical ordering.

ring r5 = real,(a,b),lp;

floating point numbers (single machine precision), variable names a and b.

ring r6 = (real,50),(a,b),lp;

1.5. Introduction to Programming in Singular 9

floating point numbers with precision extended to 50 digits, variable names a and b.

ring r7 = (complex,50,i),(a,b),lp;

complex floating point numbers with precision extended to 50 digits and imaginary unit
i, variable names a and b.

ring r8 = integer,(a,b),lp;

the ring of integers (see Coefficient rings), variable names a and b.

ring r9 = (integer, 60),(a,b),lp;

the ring of integers modulo 60 (see Coefficient rings), variable names a and b.

ring r10=(integer, 2, 10),(a,b),lp;

the ring of integers modulo 210 (see Coefficient rings), variable names a and b.
Typing the name of a ring prints its definition. The example below shows that the

default ring in Singular is Z/32003[x, y, z] with degree reverse lexicographical ordering:

ring r11;

r11;

==> // characteristic : 32003

==> // number of vars : 3

==> // block 1 : ordering dp

==> // : names x y z

==> // block 2 : ordering C

Defining a ring makes this ring the current active basering, so each ring definition above
switches to a new basering. The concept of rings in Singular is discussed in detail in
Rings and orderings.

The basering is now r11. Since we want to calculate in the ring r, which we defined
first, we need to switch back to it. This can be done using the function setring:

setring r;

Once a ring is active, we can define polynomials. A monomial, say x3, may be entered
in two ways: either using the power operator ^, writing x3 or in short-hand notation
without operator, writing x3. Note that the short-hand notation is forbidden if a name
of the ring variable(s) consists of more than one character(see Miscellaneous oddities
for details). Note, that Singular always expands brackets and automatically sorts the
terms with respect to the monomial ordering of the basering.

10 1. Introduction to Computer Algebra

poly f = x3+y3+(x-y)*x2y2+z2;

f;

==> x3y2-x2y3+x3+y3+z2

The command size retrieves in general the number of entries in an object. In partic-
ular, for polynomials, size returns the number of monomials.

size(f);

==> 5

A natural question is to ask if a point, for example, (x, y, z) = (1, 2, 0), lies on the
variety defined by the polynomials f and g. For this we define an ideal generated by
both polynomials, substitute the coordinates of the point for the ring variables, and
check if the result is zero:

poly g = f^2 *(2x-y);

ideal I = f,g;

ideal J = subst(I,var(1),1);

J = subst(J,var(2),2);

J = subst(J,var(3),0);

J;

==> J[1]=5

==> J[2]=0

Since the result is not zero, the point (1, 2, 0) does not lie on the variety V (f, g).
Another question is to decide whether some function vanishes on a variety, or in

algebraic terms, if a polynomial is contained in a given ideal. For this we calculate a
standard basis using the command groebner and afterwards reduce the polynomial with
respect to this standard basis.

ideal sI = groebner(f);

reduce(g,sI);

==> 0

As the result is 0 the polynomial g belongs to the ideal defined by f .
The function groebner, like many other functions in Singular, prints a protocol dur-

ing calculations, if desired. The command option(prot); enables protocolling whereas
option(noprot); turns it off. option, explains the meaning of the different symbols
printed during calculations.

The command kbase calculates a basis of the polynomial ring modulo an ideal, if the
quotient ring is finite dimensional. As an example we calculate the Milnor number of a
hypersurface singularity in the global and local case. This is the vector space dimension

1.5. Introduction to Programming in Singular 11

of the polynomial ring modulo the Jacobian ideal in the global case resp. of the power
series ring modulo the Jacobian ideal in the local case. See Critical points, for a detailed
explanation.

The Jacobian ideal is obtained with the command jacob.

ideal J = jacob(f);

==> // ** redefining J **

J;

==> J[1]=3x2y2-2xy3+3x2

==> J[2]=2x3y-3x2y2+3y2

==> J[3]=2z

Singular prints the line // ** redefining J **. This indicates that we had previously
defined a variable with name J of type ideal (see above).

To obtain a representing set of the quotient vector space we first calculate a standard
basis, and then apply the function kbase to this standard basis.

J = groebner(J);

ideal K = kbase(J);

K;

==> K[1]=y4

==> K[2]=xy3

==> K[3]=y3

==> K[4]=xy2

==> K[5]=y2

==> K[6]=x2y

==> K[7]=xy

==> K[8]=y

==> K[9]=x3

==> K[10]=x2

==> K[11]=x

==> K[12]=1

Then

size(K);

==> 12

gives the desired vector space dimension K[x, y, z]/jacob(f). As in Singular the func-
tions may take the input directly from earlier calculations, the whole sequence of com-
mands may be written in one single statement.

12 1. Introduction to Computer Algebra

size(kbase(groebner(jacob(f))));

==> 12

When we are not interested in a basis of the quotient vector space, but only in the
resulting dimension we may even use the command vdim and write:

vdim(groebner(jacob(f)));

==> 12

1.5.3 Procedures and Libraries

Singular offers a comfortable programming language, with a syntax close to C. So it
is possible to define procedures which bind a sequence of several commands in a new
one. Procedures are defined using the keyword proc followed by a name and an optional
parameter list with specified types. Finally, a procedure may return a value using the
command return.

We may e.g. define the following procedure called Milnor: (Here the parameter list is
(poly h) meaning that Milnor must be called with one argument which can be assigned
to the type poly and is referred to by the name h.)

Note: if you have entered the first line of the procedure and pressed RETURN, Singular
prints the prompt . (dot) instead of the usual prompt >. This shows that the input is
incomplete and Singular expects more lines. After typing the closing curly bracket,
Singular prints the usual prompt indicating that the input is now complete.

Then we can call the procedure:

Milnor(f);

==> 12

Note that the result may depend on the basering as we will see in the next chapter.
The distribution of Singular contains several libraries, each of which is a collection

of useful procedures based on the kernel commands, which extend the functionality of
Singular. The command listvar(package); list all currently loaded libraries. The
command LIB "all.lib"; loads all libraries.

One of these libraries is sing.lib which already contains a procedure called milnor to
calculate the Milnor number not only for hypersurfaces but more generally for complete
intersection singularities.

Libraries are loaded using the command LIB. Some additional information during the
process of loading is displayed on the screen, which we omit here.

LIB "sing.lib";

As all input in Singular is case sensitive, there is no conflict with the previously defined
procedure Milnor, but the result is the same.

1.5. Introduction to Programming in Singular 13

milnor(f);

==> 12

The procedures in a library have a help part which is displayed by typing

help milnor;

as well as some examples, which are executed by

example milnor;

Likewise, the library itself has a help part, to show a list of all the functions available
for the user which are contained in the library.

help sing.lib;

The output of the help commands is omitted here.
The user may add their own commands to the commands already available in Singu-

lar by writing Singular procedures. There are basically two kinds of procedures:

• procedures written in the Singular programming language (which are usually
collected in Singular libraries).

• procedures written in C/C++ (collected in dynamic modules).

At this point, we restrict ourselves to describing the first kind of (library) procedures,
which are sufficient for most applications. The syntax and general structure of a library
(procedure) is described in Procedures, and Libraries.

Procedures

Syntax:

[static] proc proc_name [(<parameter_list>)]

[<help_string>]

{

<procedure_body>

}

[example

{

<sequence_of_commands>

}]

Purpose:

14 1. Introduction to Computer Algebra

• Defines a new function, the proc proc_name.

• The help string, the parameter list, and the example section are optional. They
are, however, mandatory for the procedures listed in the header of a library. The
help string is ignored and no example section is allowed if the procedure is defined
interactively, i.e., if it is not loaded from a file by the LIB or load command (see
LIB and see load).

Example of an interactive procedure definition and its execution:

proc factorial(int n)

{

if(n==0)

{

return(1); // 0! = 1

}

else

{

int k = 1;

for(int i=0;i<=n;i++)

{

k = k*i;

}

return(k); // the value of k is returned

}

}

factorial(5);

==> 120

The probably most efficient way of writing a new library is to use one of the official
Singular libraries, say ring.lib as a sample. On a Unix-like operating system, type
LIB "ring.lib"; to get information on where the libraries are stored on your disk.
Singular provides several commands and tools, which may be useful when writing

a procedure, for instance, to have a look at intermediate results (see Debugging tools).
If such a libarary should be contributed to Singular some formal requirements are

needed: The library header must explain the purpose of the library and (for non-trivial
algorithm) a pointer to the algorithm (text book, article, etc.) all global procedures
must have a help string and an example which shows its usage. it is strongly recommend
also to provide test scripts which test the functionality: one should test the essential
functionality of the library/command in a relatively short time (say, in no more than

1.6. Numbers 15

30s), other tests should check the functionality of the library/command in detail so that,
if possible, all relevant cases/results are tested. Nevertheless, such a test should not run
longer than, say, 10 minutes.

Libraries

• A library is a collection of Singular procedures in a file.

• To load a library into a Singular session, use the LIB or load command. Having
loaded a library, its procedures can be used like any built-in Singular function,
and information on the library is obtained by entering help libname.lib;

• See Singular libraries, for all libraries currently distributed with Singular.

• When writing your own library, it is important to comply with the guidelines
described in this section. Otherwise, due to potential parser errors, it may not be
possible to load the library.

• Each library consists of a header and a body. The first line of a library must start
with a double slash //.

• The library header consists of a version string, a category string, an info string,
and LIB commands. The strings are mandatory. LIB commands are meant to load
the additional libraries used by the library under consideration.

• The library body collects the procedures (declared static or not).

• No line of a library should consist of more than 60 characters.

For a more detailed description, see www.singular.uni-kl.de.

1.6 Numbers

One of the most important algorithms in mathematics is Euclidean algorithm for finding
the greatest common divisor. In a generalized form, it will be presented explicitly or
implicitly in many algorithms we will discuss later on.

Definition 1.6.1. For integers a and b, b 6= 0, b is called a divisor of a, if there exists

an integer c such that a = bc.

We denote by b | a if b is a divisor of a and by b - a if it is not.

Lemma 1.6.2 (Division with Remainder). For a, b ∈ Z, b 6= 0, there are q, r ∈ Z
with a = b · q + r and 0 ≤ r <| b |.

www.singular.uni-kl.de

16 1. Introduction to Computer Algebra

Proof. Without loss of generality b > 0. The set

{w ∈ Z | b · w > a} 6= ∅

has a smallest element w. Then set q := w − 1 and r := a− qb.

Definition 1.6.3. An integral domain R together with a function d : R→ N∪{∞} is a

Euclidean domain if for all a, b ∈ R with b 6= 0, we can divide a by b with remainder, so

that there exist q, r ∈ R such that a = qb+r and d(r) < d(b). We say that q = a quo b is

the quotient and r = a rem b the remainder, although q and r need to be unique. Such

a d is called a Euclidean function on R.

Example 1.6.4.

(i) The function d : Z → N ∪ {−∞} defined by d(a) =| a | is an Euclidean func-

tion. Here the quotient and the remainder can be made unique with additional

requirement that r ≥ 0.

(ii) The function d : F [x] → N ∪ {−∞} defined by d(a) = deg a is an Euclidean

function. Here the quotient and the remainder are unique without any further

requirement.

Definition 1.6.5. Let R be a ring and a, b, c ∈ R. Then

(1) c is a greatest common divisor (or gcd) of a and b if

i) c | a and c | b,

ii) if d | a and d | b, then d | c for all d ∈ R.

(2) c is called a least common multiple of a and b if

i) a | c and b | c,

ii) if a | d and b | d, then c | d for all d ∈ R.

(3) A unit u ∈ R is any element with a multiplicative inverse v ∈ R, that is, uv = 1.

(4) The elements a and b are associate, denoted as a ∼ b, if a = ub for a unit u ∈ R

Remark 1.6.6.

- Neither the gcd nor the lcm are unique, but all gcds of a and b are precisely the

associates of one of them and so is for the lcm. For example, 3 and −3 are all gcds

of 12 and 15 in Z because 1 and -1 are the only units in Z.

1.6. Numbers 17

- For R = Z, we may define gcd(a, b) as the unique nonnegative greatest common

divisor and lcm(a, b) as the unique nonnegative least common multiple of a and b.

Remark 1.6.7. Let R be an integral domain and a, b ∈ R such that gcd(a, b) = c exists.

Clearly, all such divisors are obtained by multiplying c with a unit of R. In other words,

the gcd’s form an equivalence class under being associated. In this lecture, we always

assume that in each such equivalence class a normal form is selected. If the class is

represented by a ∈ R, we write N(a) for the normal form. Here N is defined as follows:

N(a) :=

0 if a = 0

1 if a = 1

a/U(a) otherwise

where U(a) is called the leading unit of a ∈ R such that a ∼ N(a), that is, a = U(a)N(a).

For a = 0, we set U(a) = 1.

Note that

• two elements of R have the same normal form if and only if they are associate,
that is, N(a) = N(b) if and only if a = u · b for some unit u ∈ R.

• the normal form of a product is equal to the products of the normal forms, that
is, N(a · b) = N(a) ·N(b).

Example 1.6.8.

i) If R = Z, U(a) = sign(a) if a 6= 0 and N(a) =| a | defines a normal form, so that

an integer is normalized if and only if it is nonnegative.

ii) If R = F [x] for a field F , then letting U(a) = lc(a) (with the convention that

U(0) = 1) and N(a) = a/U(a) defines a normal form, and a nonzero polynomial

is normalized if and only if it is monic.

Theorem 1.6.9. Suppose a1, a2 ∈ Z\{0}. Successive division with remainder terminates

a1 = q1a2 + a3

...

aj = qjaj+1 + aj+2

...

an−2 = qn−2an−1 + an

an−1 = qn−1an + 0

18 1. Introduction to Computer Algebra

and

gcd(a1, a2) = an .

Proof. We have | ai+1 |<| ai | for i ≥ 2 so after finitely many steps ai = 0.

Example 1.6.10. We compute the gcd of 36 and −15:

36 = −2 · −15 + 6

−15 = −2 · 6 + (−3)

6 = −2 · −3 + 0

hence gcd(36,−15) = −3.

The Euclidean algorithm in Theorem 1.2 can easily be summarized in pseudocode
form as follows:

Algorithm 1.2 Euclid’s Algorithm for integers

Input: m,n ∈ Z.

Output: gcd(m,n).

1: a := n, b := m

2: while b 6= 0 do

3: r := a rem b // division with remainder

4: a := b

5: b := r

6: a := N(a) // normal form

7: return a

Given a normal form, we define gcd(a, b) to be the unique normalized associate of all
greatest common divisors of a and b, and similarly lcm(a, b) as the normalized associate
of all least common multiples of a and b. Thus gcd(a, b) > 0 for R = Z and gcd(0, 0) = 0.

Example 1.6.11. Given a normal form, we compute the gcd of 36 and −15 as follows:

36 = −2 · −15 + 6

−15 = −2 · 6 + (−3)

6 = −2 · −3 + 0

hence gcd(36,−15) = N(−3) = −3/U(−3) = −3/− 1 = 3 > 0.

In the following lemma, we see some of the properties of the gcd in Z:

Lemma 1.6.12. The gcd in Z has the following properties, for all a, b, c ∈ Z.

1.7. Extended Euclidean Algorithm for Integers 19

i) gcd(a, b) = |a| ⇐⇒ a | b.

ii) gcd(a, a) = gcd(a, 0) = |a| and gcd(a, 1) = 1,

iii) gcd(a, b) = gcd(b, a) (commutativity),

iv) gcd(a, gcd(b, c)) = gcd(gcd(a, b), c) (associativity),

v) gcd(c · a, c · b) =| c | · gcd(a, b) (distributivity),

vi) | a |=| b |→ gcd(a, c) = gcd(b, c).

Consider the following example:

Example 1.6.13. Recall that the gcd of 36 and 15 is computed as follows:

36 = 2 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0

hence gcd(36, 1515) = 3. Furthermore, one can express gcd(36, 15) as a Z linear combi-

nation of 36 and 15:

3 = 15− 2 · 6 = 15− 2 · (36− 2 · 15) = 5 · 15 + (−2) · 36 .

In the following section we discuss how to express a gcd of two inputs as a linear
combination of the two inputs.

1.7 Extended Euclidean Algorithm for Integers

This section extends Algorithm 1.2. The advantage of extending this algorithm is that
it computes not only the gcd but also a representation of it as a linear combination of
the inputs. This important method is called the Extended Euclidean Algorithm (EEA)
and it works over any Euclidean domain.

Theorem 1.7.1. Let a1, a2 ∈ Z \ {0} and a3, . . . , an ∈ Z be as in Theorem 1.6.9. Then

reading the equation in Theorem 1.6.9 backwards yields the equation

an = an−2 − qn−2an−1

...

a3 = a1 − q1a2

20 1. Introduction to Computer Algebra

and it gives a representation

gcd(a1, a2) = x · a1 + y · a2

with x, y ∈ Z.

Proof. Since an divides an−1, hence also an−2 = qn−2an−1+an and inductively an−2, . . . , a1.

If t is a divisor of a1 and a2, then also of a3, . . . , an.

Using the method described above, the gcd 3 of 15 and 36 can be represented as a
linear combination of 15 and 36, that is, :

3 = 15− 2 · 6 = 15− 2 · (36− 2 · 15) = 5 · 15 + (−2) · 36

The method described in Theorem 1.7.1 for representing a gcd of two integers as a linear
combination of its inputs is summarized in the following algorithm, see Algorithm 1.3.

Algorithm 1.3 Traditional Extended Euclidean Algorithm (TEEA)

Input: f, g ∈ R, where R is a Euclidean domain.

Output: l ∈ N, ri, si, ti ∈ R for 0 ≤ i ≤ l + 1, and qi ∈ R for 1 ≤ i ≤ l, as computed

below.

1: r0 := f, s0 := 1, t0 := 0,

2: r1 := g, s1 := 0, t1 := 1

3: while ri 6= 0 do

4: qi := ri−1 qou ri// division with remainder

5: ri+1 := ri−1 − qiri
6: si+1 := si−1 − qisi
7: ti+1 := ti−1 − qiti
8: i := i+ 1

9: l := i− 1;

10: return l, ri, si, ti for 0 ≤ i ≤ l + 1, and qi for 1 ≤ i ≤ l

Note that:

• the algorithm terminates because the d(ri) are strictly decreasing non-negative
integers for 1 ≤ i ≤ l, where d is the Euclidean function on R.

• The elements ri for 1 ≤ i ≤ l + 1 are the remainders and the qi for 1 ≤ i ≤ l are
the quotients in the EEA.

• In EEA, the elements ri, si, and ti form the i-th row in the TEEA, for 1 ≤ i ≤ l+1.
The central property is that sif + tig = ri for all i; in particular, slf + tlg = rl is
a gcd of f and g.

1.7. Extended Euclidean Algorithm for Integers 21

Example 1.7.2.

a) Consider the ring R = Z, and f = 126 and g = 35. The following table illustrates

the computation.

i qi ri si ti

0 126 1 0

1 3 35 0 1

2 1 21 1 -3

3 1 14 -1 4

4 2 7 2 -7

5 0 -5 18

From this we can read off row 4 that gcd(126, 35) = 7 = 2 · 126 + (−7) · 35.

b) Consider the ring R = Q[x], and the polynomials f = 18x3 − 42x2 + 30x− 6, g =

−12x2 + 10x − 2 ∈ R. Compute a gcd of f and g using the TEEA. The TEEA

applied to f and g goes as follows: Row i + 1 is obtained from the two preceding

ones by first computing the quotient qi = ri−1 quo ri and then for each of the three

remaining columns by subtracting the quotient times the entry in row i of that

column from the entry in row i− 1.

i qi ri si ti

0 18x3 − 42x2 + 30x− 6 1 0

1 −3
2
x+ 9

4
−12x2 + 10x− 2 0 1

2 −8
3
x+ 4

3
9
2
x− 3

2
1 3

2
x− 9

4

3 0 8
3
x− 4

3
4x2 − 8x+ 4

From this table, we have l = 2, and from row 2, we find that a gcd of f and g is

9

2
x− 3

2
= 1 · f +

(
3

2
x− 9

4

)
g .

From a global view of the algorithm, it is convenient to consider the matrices

R0 =

(
s0 t0
s1 t1

)
, Qi =

(
0 1
1 −qi

)
for 1 ≤ i ≤ l.

in R2×2, and Ri = Qi · · ·Q1R0 for 0 ≤ i ≤ l.

22 1. Introduction to Computer Algebra

Invariants of the Traditional EEA

The following lemma collects some invariants of the TEEA.

Lemma 1.7.3. For 0 ≤ i ≤ l, we have

i) Ri

(
f

g

)
=

(
ri

ri+1

)
,

ii) Ri =

(
si ti

si+1 ti+1

)
,

iii) gcd(f, g) ∼ gcd(ri, ri+1) ∼ rl,

iv) sif + tig = ri (this also holds for i = l + 1,

v) siti+1 − tisi+1 = (−1)i,

vi) gcd(ri, ti) ∼ gcd(f, ti),

vii) f = (−1)i(ti+1ri − tiri+1), g = (−1)i+1(si+1ri − siri+1 with the convention that

rl+1 = 0.

Proof. For (i) and (ii) we proceed by induction on i. The case i = 0 is clear from step 1

of the algorithm, and we may assume i ≥ 1. Then

Qi

(
ri−1

ri

)
=

(
0 1

1 −qi

)(
ri−1

ri

)
=

(
ri

ri−1 − qiri

)
=

(
ri

ri+1

)
,

and (i) follows from Ri = QiRi−1 and the induction hypothesis. Similarly, (ii) follows

from

Qi

(
si−1 ti−1

si ri

)
=

(
si ti

si+1 ti+1

)
and the induction hypothesis.

The other parts are left as an exercises.

Recall that if we are given a normal form, the gcd of two integers is defined as the
unique normalized associate of all greatest common divisors of a and b. In the polynomial
case, it turns out that it is not only useful to have a normal form for the gcd, but to
modify the traditional Euclidean algorithm so that all the remainders ri are normalized.

The computation of the traditional Euclidean algorithm produce remainders whose
coefficients have huge numerators and denominators even for inputs of moderate size,
and that the coefficients of the monic associates of the remainders are such smaller. The

1.7. Extended Euclidean Algorithm for Integers 23

following variant of the traditional Eulidean algorithm, Algorithm 1.4, works with these
monic associates:

Algorithm 1.4 Extended Euclidean Algorithm (EEA)

Input: f, g ∈ R, where R is a Euclidean domain with a normal form.

Output: l ∈ N, ri, si, ti ∈ R for 0 ≤ i ≤ l + 1, and qi ∈ R for 1 ≤ i ≤ l, as computed

below.

1: ρ0 := U(f), r0 := N(f), s0 := 1/ρ0, t0 := 0,

2: ρ1 := U(g), r1 := N(g), s1 := 0, t1 := 1/ρ1

3: while ri 6= 0 do

4: qi := ri−1 qou ri// division with remainder

5: ρi+1 := U(ri−1 − qiri)
6: ri+1 := (ri−1 − qiri)/ρi+1

7: si+1 := (si−1 − qisi)/ρi+1

8: ti+1 := (ti−1 − qiti)/ρi+1

9: i := i+ 1

10: l := i− 1;

11: return l, ri, si, ti for 0 ≤ i ≤ l + 1, and qi for 1 ≤ i ≤ l

The elements ri for 0 ≤ i ≤ l + 1 are the remainders, the qi for 1 ≤ i ≤ l are the
quotients, and the elements r−i, si, and ti form the i-th row in the EEA, for 0 ≤ i ≤ l+1.
The elements sl and tl, satisfying slf + tlg = gcd(f, g), are the Bezout coefficients of f
and g.

Example 1.7.4. With monic remainders, we compute the gcd of f and g using the

EEA where f = 18x3 − 42x2 + 30x− 6, g = −12x2 + 10x− 2 ∈ Q[x].

i qi ρi ri si ti

0 18 x3 − 7
3
x2 + 5

3
x− 1

3
1
18

0

1 x− 3
2

-12 x2 − 5
6
x+ 1

6
0 − 1

12

2 x− 1
2

1
4

x− 1
3

2
9

1
3
x− 1

2

3 1 0 −2
9
x+ 1

9
−1

3
x2 + 2

3
x− 1

3

From this table, we have l = 2, and from row 2, we find that a gcd of f and g is

x− 1

2
=

2

9
· f +

(
1

3
x− 1

2

)
g .

One may apply division algorithm to find a list of prime numbers.

Definition 1.7.5. An element p ∈ Z>1 is called prime number, if p = a · b, a, b ∈ Z≥1

implies a = 1 or b = 1 and we call p a composite number if it is not prime.

24 1. Introduction to Computer Algebra

Theorem 1.7.6 (The Fundamental Theorem of Arithmetic). Every integer n ∈
Z \ {−1, 0, 1} has a unique representation may be expressed uniquely in the form

n = ±
k∏
i=1

pαi
i

with prime factors p1 < . . . < pk and αi ∈ N.

Algorithm 1.7.7. Let n ∈ Z be composite. The smallest prime factor p of n satisfies

p ≤ m := b
√
nc .

If we know all primes p ≤ m, then we can test p | n by division with remainder and,

hence, factor n.

Note that bxc = max{a ∈ Z | a ≤ x, x ∈ R}, the largest integer less than or equal to
x. The function bxc is called the floor function of x.

Algorithm 1.7.8 (Sieve of Eratosthenes). We can find all prime numbers smaller

than n in the following way: Note all numbers from 2 to n. Starting with p = 2, delete

all a · p for a > 1, and continue with the next largest number p which not has been

deleted. Note that p is prime, since it is not a multiple of smaller prime. Stop if p >
√
n.

Example 1.7.9. We compute all primes ≤ 21:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 3 5 7 9 11 13 15 17 19 21

2 3 5 7 11 13 17 19

In the first step, we delete all multiple of 2, in the second step all multiple of 3. All

remaining numbers are prime, since 5 >
√

21.

One can even describe the distribution of the primes over all integers:

Theorem 1.7.10 (Prime Number Theorem). For x ∈ R>0 let

π(x) =| {p ≤ x | p ∈ N prime } | .

Then

lim
x→∞

π(x)
x

ln(x)

= 1 .

Example 1.7.11. The number of prime ≤ 21 is π(21) = 8, see Example 1.7.9.

1.8. Groups 25

Computer algebra in this spirit has many theoretical applications in number theory
and algebraic geometry and practical applications, for example, in coding theory or RSA
public key cryptography.

In general, number theory explores the properties of numbers, most importantly the
interaction of addition and multiplication. This leads to many problems which are easy
to formulate, but highly non-trivial to solve. The most famous one is Fermat’s last
theorem of 1637: There is no (non-trivial) integer solution of the equation

xn + yn = zn

for n ≥ 3. With the help of a computer one can test Fermat’s last theorem for very
large n (using the theoretical result that you only have to test it for so called irregular
primes). Fermat’s last theorem was finally proven in 1995 (by A. Wiles) after 350 years
of work of many people, which led to many new concepts in mathematics.

1.8 Groups

The concept of groups has important applications in almost every field of mathematics,
including algebraic geometry and commutative algebra. It allows us to describe symme-
tries in mathematical objects and problems, reducing a more complicated problem to a
simpler one. From the practical point of view this can speed up computations.

Recall first that an action of a group G on a set S is a function

α : G× S → S

defined by α(g, x) = gx such that for all x ∈ S and g1, g2 ∈ G:

ex = x, and α(g1g2, x) = g1(g2x) .

When such an action is given, we say that G acts on the set S.

Remark and Definition 1.8.1. Let G be a group and H a subgroup.

i) An action of the group H on the set G is given by (h, x) 7→ hx, where hx is the

product in G. The action of h ∈ H on G is called a (left) translation. If K is

another subgroup of G and S is the set of all left cosets of K in G, then H acts

on S by translation: (h, xK) 7→ hxK.

ii) An action of the group H on the set G is given by (h, x) 7→ hxh−1 with the product

in G. The action of h ∈ H on G is called conjugation by h and the element hxh−1

is said to be a conjugate of x. If K is any subgroup of G and h ∈ H, then hKh−1

is a subgroup of G isomorphic to K. Hence H acts on the set S of all subgroups

of G by conjugation: (h,K) 7→ hKh−1. The group hKh−1 is said to be conjugate

to K.

26 1. Introduction to Computer Algebra

iii) An action of the symmetric group Sn on the set In = {1, 2, . . . , n} is given by

(σ, x) 7→ σ(x).

Theorem and Definition 1.8.2. Let G be a group that acts on a set S.

a) The relation on S defined by

x ∼ y ⇔ gx = y for some g ∈ G

is an equivalence relation. The equivalence classes of this equivalence relation are

called the orbits of G on S. The orbit of x ∈ S is denoted x.

b) For each x ∈ S,
Gx = {g ∈ G | gx = x}

is a subgroup of G and is denoted as Stab(x). The subgroup Stab(x) is called

variously the subgroup fixing x, the isotropy group of x or the stablizer of x.

Proof. (a) ∼ satisfies reflexivity since ex = x, that is, x ∼ x. The relation is symmetric

since

x ∼ x′ ⇒ gx = x′ for some g ∈ G⇒ x = g−1x′ and g−1 ∈ G⇒ x′ ∼ x .

Suppose x ∼ x′ and x′ ∼ x′′. Then by definition, gx = x′, g′x′ = x′′ for some g, g′ ∈ G.

Since g′g ∈ G and

(g′g)x = g′(gx) = g′x′ = x′′

we have x ∼ x′′ and, hence, ∼ is transitive. Thus ∼ is an equivalence relation.

b) The Stab(x) is non-empty since ex = x⇒ e ∈ Stab(x). Let g, g′ ∈ Stab(x). Then

gg′−1x = g(g′x) = gx = x⇒ gg′−1 ∈ Stab(x) .

Example and Definition 1.8.3. Let G be a group.

a) If a group G acts on itself by conjugation, then the orbit of

{gxg−1 | g ∈ G}

of x ∈ G is called the conjugacy class of x.

b) If a subgroup H acts on G by conjugation the isotropy group

Hx = {h ∈ H | hxh−1 = x} = {h ∈ H | hx = xh}

is called the centralizer of x in H and is denoted CH(x).

1.8. Groups 27

c) If H = G, CG(x) is simply called the centlizer of x.

d) If H acts by conjugation on the set S of all subgroups of G, then the subgroup of

H fixing K ∈ S, namely {h ∈ H | hKh−1 = K}, is called the normalizer of K in

H and denoted NH(K).

Consider, for example, the symmetry group G of the octahedron, which contains all
rotations, reflections, and rotoreflections, which map the octahedron to itself. Number-
ing the vertices, we can identify any symmetry with an element of the symmetric group
S6 . For example, the rotation by 90 degrees along the axis through 1 and 6 is given by
(2, 3, 4, 5) ∈ S6 using cycle notation. Let us say, we want to compute the stabilizers of
the vertices of the octahedron, that is, the subgroups

Stab(j) = {σ ∈ G | σ(j) = j} .

Figure 1.1: Octahedron

By the action of G, it is sufficient to determine Stab(1), since all stabilizers can be
identified by conjugation of groups

σ(j) = σ−1Stab(1)σ,

where σ ∈ G with 1 = σ(j). So instead of 6 computations, by taking the symmetry
of the problem into account, we only have to do one. To compute the group order of
Stab(1), we use:

Theorem 1.8.4. Let G be a group acting on a set X by

G×X → X

(that is, ex = x and (g ◦ h)x = g(hx) for all x ∈ X and g, h ∈ G). Fix x ∈ X and write

Orb(x) = {gx | g ∈ G}

for the orbit of x. Then

| G |=| Orb(x) | · | Stab(x) | .

28 1. Introduction to Computer Algebra

Hence

| Stab(1) |= | G |
6

,

and, if p is a point which does not lie on any symmetry plane or axis,

| G |=| Stab(p) | · | Gp |= 1 · (6 · 8) = 48,

see Figure 1.1, so

| Stab(1) |= | G |
6

= 8,

It is easy to guess elements of G and Stab(1), but how do we know, whether they
really generate the respective groups, equivalently, that they generate groups of the
correct order? We can leave this tedious calculation to the open source computer algebra
system Gap [?], the leading software for group theory:

Example 1.8.5. We use Gap to prove that

Stab(1) = 〈(2, 3, 4, 5), (2, 4)〉

gap> Stab1:=Group((2,3,4,5),(2,4));;

gap> Size(Stab1);

8

gap> Elements(Stab1);

[(),(3,5),(2,3)(4,5),(2,3,4,5),(2,4),(2,4)(3,5),

(2,5,4,3),(2,5)(3,4)]

In the same way, we can find generators of the whole symmetry group:

gap> G:=Group((2,3,4,5),(1,3)(5,6));;

gap> Size(G);

48

Hence

G = 〈(2, 3, 4, 5), (1, 3)(5, 6)〉 .

Gap implements algorithms for computing with subgroups of symmetric groups. As
we have seen, given a set of generators, it can determine the group order, and the set of
all elements. It can also determine, whether two such groups are isomorphic, and specify
an isomorphism.

1.9. Symbolic Integration 29

1.9 Symbolic Integration

The problem of finding a formula for the antiderivative, or indefinite integral, of a given
function f(x) is called symbolic integration. That is, to find a differentiable function
F (x) such that

F (x) =

∫
f(x) dx.

The term symbolic is used to distinguish this problem from that of numerical integra-
tion, where the value of F at a particular input or set of inputs, rather than a general
formula for F , is sought. For example,∫

2

3
x dx =

x2

3
+ C and

∫ 1

0

2

3
x dx =

1

3

are symbolic results for indefinite and definite integrals, respectively, where C is a con-
stant of integration. A numerical result for the definite integral is:∫ 1

0

2

3
x dx ≈ 0.33 .

Both symbolic and numerical integration problems were held to be of practical and
theoretical importance long before the time of digital computers, but they are now
generally considered the domain of computer science, as computers are most often used
currently to tackle individual instances.

Though one can construct an algorithm for finding the derivative of an expression
in a straightforward process, the reverse question, finding the integral, is much more
difficult. The general purpose computer algebra systems like the commercial systems
Axiom, Reduce, Maple, and Mathematica are usually less powerful in the specific
areas, but provide a larger set of algorithms to manipulate symbolic expressions.

A procedure called the Risch algorithm exists which is an algorithm for symbolic
integration of functions which are compositions of rational functions, exponentials, log-
arithm, radicals, and trigonometric functions.

Risch algorithm:

• was, in its original form, not suitable for a direct implementation, and its complete
implementation took a long time.

• was first implemented in the computer algebra system Reduce in the case of
purely transcendental functions; the case of purely algebraic functions was solved
and implemented in Reduce by James H. Davenport; the general case was solved
and implemented in the computer algebra system Axiom by Manuel Bronstein.

• is based on the theorem of Liouville, which uses the following definitions: A dif-
ferential field is field K with a differentiation map

D : K → K,

f 7→ D(f) = f ′

30 1. Introduction to Computer Algebra

which satisfies the usual rules:

D(f + g) = D(f) +D(g) and D(fg) = fD(g) +D(f)g .

• applies only to indefinite integrals and most of the integrals of interest to physicists,
theoretical chemists and engineers, are definite integrals often related to Laplace
transforms, Fourier transforms and Mellin transforms.

Lacking of a general algorithm, the developers of computer algebra systems, have
implemented heuristics based on pattern-matching and the exploitation of special func-
tions, in particular the incomplete gamma function. Although this approach is heuristic
rather than algorithmic, it is nonetheless an effective method for solving many definite
integrals encountered by practical engineering applications. Note that the only almost
complete implementation of Risch’s algorithm is that of Axiom.

1.10 Linear Algebra

In addition to the Euclidean algorithm, the second key algorithm generalized by Buch-
berger’s algorithm is Gaussian reduction. We can reformulate Gaussian reduction on a
homogeneous linear system of equations over a field K in the following way:

Algorithm 1.10.1 (Gauss). Consider non-zero homogeneous linear polynomials 1

f1, . . . , fn ∈ K[x1, . . . , xm] .

Choose an ordering of the variables (without loss of generality x1 > x2 > . . . > xm).

Define L(fi) as the largest monomial of fi and by LC(fi) its coefficient. As long as there

are fi and fj with L(fi) = L(fj) replace fj by the S-pair

spoly(fi, fj) = LC(fi) · fj − LC(fj) · fi

If fj = 0, then delete fj.

Sort the set of fj by the size of L(fj).

This algorithm terminates with a row echelon form. If we reduce the resulting poly-
nomials by those with smaller lead monomials, and divide all polynomials by their lead
coefficients, we obtain the (unique) reduced row echelon form. When discussing Gröbner
bases, we will see how the special case of linear equations generalizes to the higher degree
setup.

1a homogeneous polynomial is a polynomial whose nonzero terms all have the same degree. For

example, xd + 2xd−3y3 + 9xd−4y4 is a homogeneous polynomial of degree d in two variables.

1.10. Linear Algebra 31

Example 1.10.2. We solve the following system of equations:

f1 = x1 + x2 + x5 = 0

f2 = x1 + x2 + 2x3 + 2x4 + x5 = 0

f3 = x1 + x2 + x3 + x4 + x5 = 0 .

Gaussian elimination yields

f1 = x1 + x2 + x5 = 0

spoly(f1, f2) = 2x3 + 2x4 = 0

spoly(f1, f3) = x3 + x4 = 0

and since the S-pair of the last two vanishes

x1 + x2 + x5 = 0

2x3 + 2x4 = 0 .

Utilizing the Gröbner basis engine of Singular, we can do the same computation as

follows:

ring R = 0, (x(1..5)), lp;

ideal I = x(1) + x(2) + x(5),

x(1) + x(2) + 2*x(3) + 2*x(4) + x(5),

x(1) + x(2) + x(3) + x(4) + x(5);

option(redSB);

ideal G = std(I);

G;

_[1] = x(3) + x(4)

_[2] = x(1) + x(2) + x(5)

Remark 1.10.3. Solving an inhomogeneous linear system of equations

fi =
∑
j

aijxj − ci = 0

can be reduced to the homogeneous case by homogenizing the system to

fi =
∑
j

aijxj − ciy = 0

with a homogenizing variable y.

32 1. Introduction to Computer Algebra

1.11 Algebraic Geometry

If we pass from linear systems to polynomial equations of higher degree things become
much more interesting. Algebraic geometry studies the set of solutions of such systems.
It will be the main motivation of the algorithms we encounter in commutative algebra.

Definition 1.11.1. The affine space of dimension n over the field K is defined as

An(K) = {(a1, . . . , an) ∈ Kn | a1, . . . , an ∈ K} = Kn.

Definition 1.11.2.

• An affine algebraic set is the common zero set

V (f1, . . . , fr) = {p ∈ Kn | fi(p) = 0 for all 1 ≤ i ≤ r}

of polynomials f1, . . . , fr ∈ K[x1, . . . , xn].

• An affine algebraic set X is called irreducible, if it cannot be written as X = X1∪X2

with affine algebraic sets Xi X. Then we also call X an affine algebraic variety.

Example 1.11.3. Affine algebraic varieties commonly known also outside algebraic

geometry are V (1) = ∅, V (0) = Kn, the set of solutions of a linear system of equations

A · x− b = 0

or the graph

Γ(g) = V (x2 · b(x1)− a(x1)) ⊆ K2

of a rational function

g =
a

b
∈ K(x1) .

For example, the graph of g(x1) =
x31−1

x1
is

V (x2x1 − x3
1 + 1) ⊆ K2 .

Example and Definition 1.11.4. If f ∈ K[x1, . . . , xn] is non-zero and non-constant,

then V (f) ⊆ Kn is called a hypesurface. Thus a subset of Kn is algebraic if and only

if it can be written as the intersection of finitely many hypersurfaces. Hypersurfaces in

K2 are called plane curves. Note that V (f) is irreducible if and only if f is irreducible.

In the next chapter we will discuss the algorithmic foundation for computing with
algebraic sets.

Chapter 2

Ideals, Varieties and Standard Bases

2.1 Ideals and Varieties

Let K be a field. Let us start this section with following easy but important observation
about algebraic set V (f1, . . . , fs) with fi ∈ R = K[x1, . . . , xn]:

If f1(p) = 0, . . . , fs(p) = 0 for p ∈ Kn, then also any R-linear combination of the fi
vanishes on p, that is, (

s∑
i=1

ri · fi

)
(p) =

s∑
i=1

ri(p)fi(p) = 0

for all ri ∈ R. Hence, V (f1, . . . , fs) depends only on the ideal

〈f1, . . . , fs〉 =

{
s∑
i=1

ri · fi
∣∣∣∣ ri ∈ R

}
⊆ R,

generated by f1, . . . , fs.
Recall

Definition 2.1.1. Let R be a commutative ring with 1R = 1. An ideal is a non-empty

subset I ⊆ R with

a+ b ∈ I , ra ∈ I

for all a, b ∈ I and r ∈ R. If S ⊆ R, then

〈S〉 =

{∑
finite

ri · fi
∣∣∣∣ ri ∈ R, fi ∈ S

}
is the ideal generated by S.

Recall, that the definition of an ideal is motivated in algebra by the following: For a
subgroup I ⊆ R the additive group R/I becomes a ring with multiplication induced by
that of R if and only if I is an ideal (prove this as an easy exercise).

By the above observation it is natural to consider, instead of the vanishing locus of a
set of equations, the vanishing locus of an ideal:

33

34 2. Ideals, Varieties and Standard Bases

Definition 2.1.2. If I ⊂ K[x1, . . . , xn] then

V (I) = {p ∈ Kn | f(p) = 0 for all f ∈ I}

is called the vanishing locus of I.

This is indeed an affine variety, because any ideal I ⊂ K[x1, . . . , xn] is finitely gener-
ated, as we will prove in Theorem ?.

Definition 2.1.3. Let S ⊆ Kn be a subset. Consider the polynomial ring R =

K[x1, . . . , xn]. Then

I(S) = {f ∈ R | f(p) = 0 for all p ∈ S}

is an ideal, the vanishing ideal of S.

Example and Definition 2.1.4. Consider the elliptical arc

S = {(x1, x2) ∈ R2 | x2
1 + 2x2

2 = 1 and x1, x2 ≥ 0}

Then the vanishing ideal of S is

I(S) = 〈x2
1 + 2x2

2 − 1〉 .

However, the vanishing locus V (I(S)) of I(S) is the complete ellipse, the smallest

algebraic set containing S. The set V (I(S)) is called the closure of S in the so called

Zariski topology and is denoted by

S = V (I(S)) .

The Zariski topology on Kn has as closed sets the V (I) for ideals I ⊆ K[x1, . . . , xn].

By I and V 1 inclusion reversing maps

I : { affine algebraic setsX ⊆ Kn} → { ideals in K[x1, . . . , xn]}
V : { ideals in K[x1, . . . , xn]} → { affine algebraic sets X ⊆ Kn}

between the set of algebraic subsets of Kn and the set of ideals of K[x1, . . . , xn] are
given, it remains to show that any ideal I ⊆ K[x1, . . . , xn] is finitely generated, that is,
there are finitely many f1, . . . , fs ∈ K[x1, . . . , xn] with I = 〈f1, . . . , fs〉. We begin with
a characterization of these ideals:

Theorem and Definition 2.1.5. Let R be a commutative ring with 1. The following

conditions are equivalent:

1the map V is not injective since V (x) = V (x2) ⊆ K .

2.1. Ideals and Varieties 35

a) Every ideal I ⊆ R is finitely generated.

b) Every ascending chain

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

of ideals terminates, that is, there is an m, such that

Im = Im+1 = Im+2 =

c) Every non-empty set of ideals has a maximal element with respect to inclusion. If

R satisfies one of these conditions, then R 2 is called Noetherian.

Proof. a) ⇒ b): Let I1 ⊆ I2 ⊆ . . . be a claim of ideals. Then

I =
∞∑
j=1

Ij

is also an ideal of I. If a, b ∈ I, then there are j1, j2 ∈ N with a ∈ Ij1 , b ∈ Ij2 , and

a+ b ∈ Imax{j1,j2} ⊆ I .

By (a) the ideal I is finitely generated, hence there are f1, . . . , fs ∈ I with I =

〈f1, . . . , fs〉. For every fk there is a jk with fk ∈ Ijk . For

m := max{jk | k = 1, . . . , s}

we have f1, . . . , fs ∈ Im, so

I = 〈f1, . . . , fs〉 ⊆ Im ⊆ Im+1 ⊆ . . . ⊆ I

and hence

Im = Im+1 =

b) ⇒ c): Assume that c) does not hold. Then there is a set M of ideals such that for

every I ∈M there is an I ′ ∈M with I $ I ′ strictly contained. Hence, by induction, we

obtain a sequence

I1 $ I2 j . . .

of ideals in M , which does not terminate, that is, b) is not satisfied.

2Rings satisfying one of these conditions of the theorem called Noetherian after Emmy Noether (1882-

1935), who has formulated the general structure theory for this class of rings and used this to give

a simpler and more general proof of the theorems of Kronecker and Lasker.

36 2. Ideals, Varieties and Standard Bases

c) ⇒ a): Let I be an arbitrary ideal. The set

M = {I ′ ⊆ I | I ′ finitely generated }

is non-empty, for example, 〈0〉 ∈ M . Let J be a maximal element of M . So there are

f1, . . . , fs ∈ J with J = 〈f1, . . . , fs〉. We show that I = J . If this is not true, then there

is an f ∈ I \ J with

J j 〈f1, . . . , fs, f〉 ⊆ I .

This contradicts the maximality of J .

Example 2.1.6.

1. The ring of integers Z is Noetherian, since all of Z are of the form

〈n〉 = nZ = {nk | k ∈ Z}

(an exercise) and, hence, are finitely generated (by a single element).

2. A field K only has the ideals 〈0〉 and K = 〈1〉, in particular, K is Noetherian.

3. If R is Noetherian and I ⊆ R an ideal, then the quotient ring R/I is Noetherian.

Proof. Let π : R→ R/I be the canonical epimorphism. If J ⊆ R/I an ideal then

by assumption π−1(J) = 〈f1, . . . , fs〉, and J = 〈π(f1), . . . , π(fs)〉.

Hilbert has shown in 1890, that the polynomial ring K[x1, . . . , xn] over a field K is
Noetherian:

Theorem 2.1.7 (Hilbert’s Basis Theorem(HBT)). If R is a Noetherian ring, then

also R[x] is Noetherian.

Using that a field K and the ring of integers Z are Noetherian, by induction on the
number n of variables

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]

we obtain:

Corollary 2.1.8. Let K be a field. Then the polynomial rings K[x1, . . . , xn] and Z[x1, . . . , xn]

in n variables are Noetherian.

The fact that K[x1, . . . , xn] is Noetherian, is the basis of all algorithms, we will discuss.
For the proof of HBT we consider the lead coefficients in R of polynomials in R[x]. If

f = akx
k + . . .+ a1x+ a0 ∈ R[x]

with ak 6= 0, then the degree of f is deg f = k, its leading coefficients is LC(f) = ak, its
lead term LT(f) = akx

k, and its lead monomial L(f) = xk. We now prove the HBT:

2.1. Ideals and Varieties 37

Proof. Assume R[x] is not Noetherian. Then there is an ideal I ⊆ R[x] which is not

finitely generated. Let f1 ∈ I with deg f1 minimal, f2 ∈ I \ 〈f1〉 with deg f2 minimal,

and inductively

fk ∈ I \ 〈f1, . . . , fk−1〉

with deg fk minimal. Then

deg f1 ≤ deg f2 ≤ . . . ≤ deg fk ≤

and we obtain an ascending chain of ideals in R.

〈LC(f1)〉 ⊆ 〈LC(f1), LC(f2)〉 ⊆ . . . ⊆ 〈LC(f1), LC(f2), . . . , LC(fk)〉 ⊆

We show that the inclusions are strict (and hence R is not Noetherian): Assume

〈LC(f1), LC(f2), . . . , LC(fk)〉 = 〈LC(f1), LC(f2), . . . , LC(fk+1)〉 .

Then we can write

LC(fk+1) =
k∑
j=1

bjLC(fj)

with bj ∈ R. Hence

g :=
k∑
j=1

bjx
deg fk+1−deg fjfj ∈ 〈f1, . . . , fk〉

has the same lead term as fk+1, so

deg (g − fk+1) < deg fk+1,

a contradiction, since fk+1 was chosen to have minimal degree.

Theorem 2.1.9 (Weak Nullstellensatz (WN)). Let K be an algebraically closed field

and I ⊆ K[x1, . . . , xn] an ideal. Then

V (I) = ∅ ⇐⇒ I = K[x1, . . . , xn] .

Remark 2.1.10. The condition thatK is algebraically closed, is necessary. For example,

V (x2 + y2 + 1) ⊆ R2 is empty (it is not empty over C).

From WN theorem, we obtain:

Theorem 2.1.11 (Strong Nullstellensatz (SN)). Let K be an algebraically closed

field and I ⊆ K[x1, . . . , xn] an ideal. Then

I(V (I)) =
√
I

where √
I = {f ∈ K[x1, . . . , xn] | ∃a ∈ N with fa ∈ I} .

denotes the radical of I.

Bibliography

39

	Introduction to Computer Algebra
	What is Computer Algebra?
	Application Areas of Computer Algebra
	Why Should We Use Computer Algebra?
	Some Remarks on Computer Algebra Systems and Their Implementations
	Introduction to Programming in Singular
	First Step
	Rings and standard bases
	Procedures and Libraries

	Numbers
	Extended Euclidean Algorithm for Integers
	Groups
	Symbolic Integration
	Linear Algebra
	Algebraic Geometry

	Ideals, Varieties and Standard Bases
	Ideals and Varieties

	Bibliography

