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Chapter 1

Vector Spaces

1.1 Vector Spaces

Definition 1.1.1. Let F be a field. A vector space over F is a nonempty set V together

with two operations:

◦ addition: assigns to each pair (u, v) ∈ V × V a vector u+ v ∈ V .

◦ scalar multiplication: assigns to each pair (r, u) ∈ F × V a vector ru in V .

Furthermore, the following properties must be satisfied:

• Associativity of addition: For all vectors u, v, w ∈ V , u+ (v + w) = (u+ v) + w.

• Commutativity of addition: For all vectors u, v ∈ V , u+ v = v + u.

• Existence of zero: There is a zero vector 0 ∈ V with the property that 0 + u =

u+ 0 = u for all vectors u ∈ V .

• Existence of additive inverses : For each vector u ∈ V , there is a vector in V ,

denoted by −u, with the property that u+ (−u) = (−u) + u = 0.

• Properties of scalar multiplication: For all scalars a, b ∈ F and for all vectors

u, v ∈ V ,

a(u+ v) = au+ av

(a+ b)u = au+ bu

(ab)u = a(bu)

1u = u

In the above definition
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◦ Elements of F (resp. V ) are referred to as scalars (resp. vectors).

◦ The first four properties are equivalent to (V,+) is an abelian group.

◦ V is sometimes called an F-space.

◦ If F = R (resp. C), then V is a real (resp. complex ) vector space.

1.2 Examples of a vector space

1) Let F be a field. The set VF of all functions from F to F is a vector space over F ,
under the operations of ordinary addition and scalar multiplication of functions:

(f + g)(x) = f(x) + g(x), and (af)(x) = a(f(x)).

2) The set Mm×n(F ) of all m× n matrices with entries in a field F is a vector space
over F , under the operations of matrix addition and scalar multiplication.

1.3 Subspaces, Linear combinations and Generators

Most algebraic structures contain substructures.

Definition 1.3.1. A subspace of a vector space V is a subset S of V that is a vector

space in its own right under the operations obtained by restricting the operations of V

to S. To indicate that S is a subspace of V , we use the notation S ≤ V . If S is a

subspace of V but S 6= V , we say that S is a proper subspace of V and it is denoted by

S < V . The zero subspace of V is {0}.

Definition 1.3.2. Let S be a nonempty subset of a vector space V . A linear combination

(L.C) of vectors in S is an expression of the form

a1v1 + . . .+ anvn

where v1 . . . vn ∈ S and a1, . . . , an ∈ F . The scalars ai are called the coefficients of the

linear combination. A L.C is trivial if every coefficient ai is zero. Otherwise, it is non

trivial.

Theorem 1.3.3. A non-empty subset S of a vector space V is a subspace of V if and

only if S is closed under addition and scalar multiplication or equivalently, S is closed

under linear combinations, that is,

a, b ∈ F, u, v ∈ S =⇒ au+ bv ∈ S.
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Example 1.3.4. Consider the vector space V (n, 2) of all binary n-tuples, that is, n-

tuples of 0’s and 1’s. The weightW(v) of a vector v ∈ V (n, 2) is the number of non-zero

coordinates in v. Let En be the set of all vectors in V of even weight. Then En ≤ V (n, 2).

Proof. For vectors u, v ∈ V (n, 2), show that

W(u+ v) =W(u) +W(v)− 2W(u ∩ v) (1.1)

where u ∩ v is the vector in V (n, 2) whose ith component is the product of the ith

components of u and v, that is, (u ∩ v)i = ui · vi. Let u and v be elements of En. Then

by definition W(u) and W(v) are even which by (1.1) implies W(u+ v) is even, that is,

u+ v ∈ En. Let a ∈ F2 and let u ∈ En. Clearly, W(au) is even which implies au ∈ En.

Thus En ≤ V (n, 2), known as the even weight subspace of V (n, 2).

Definition 1.3.5. The subspace spanned (or generated) by a nonempty set S of vectors

in V is the set of all linear combinations of vectors from S:

〈S〉 = Span(S) =

{
n∑
i=1

rivi

∣∣∣∣ ri ∈ F, vi ∈ S
}
.

When S = {v1, . . . , vn} is a finite set, we use the notation 〈v1, . . . , vn〉 or span(v1, . . . , vn).

A set S of vectors in V is said to be span V , or generates V , if V = Span(S).

Any superset of a spanning set is also a spanning set and all vector spaces have
spanning set since V spans itself.

1.4 Linear Dependence and Independence of Vectors

Definition 1.4.1. Let V be a vector space. A nonempty set S of vectors in V is linearly

independent (L.I) if for any distinct vectors s1, . . . , sn in S

a1s1 + . . .+ ansn = 0⇒ ai = 0 for all i.

In other words, S is L.I if the only L.C of vectors from S that is equal to 0 is the trivial

L.C, all of whose coefficients are 0. If S is not L.I, it is said to be linearly dependent

(LD).

A L.I set of vectors cannot contain the zero vector, since 1· 0 = 0 violates the condition
of linear independence.
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Definition 1.4.2. Let S be a nonempty set of vectors in V . To say that a nonzero vector

v ∈ V is an essentially unique L.C of the vectors in S is to say that, up to the order of

terms, there is one and only one way to express v as a L.C v =
∑n

i=1 aisi where the

si’s are distinct vectors in S and the coefficients ai are nonzero. More explicitly, v 6= 0

is an essentially unique L.C of vectors in S if v ∈ 〈S〉 and if whenever

v = a1s1 + . . .+ ansn and v = b1t1 + . . .+ bmtm

where the si’s are distinct and ti’s are distinct and all coefficients are nonzero, then

m = n and after a reindexing of the biti’s if necessary, we have ai = bi and si = ti for all

i = 1, . . . , n.

Theorem 1.4.3. Let S 6= {0} be a nonempty set of vectors in V . The following are

equivalent:

(a) S is L.I.

(b) Every nonzero vector v ∈ span(S) is an essentially unique L.C of the vectors in S.

(c) No vector in S is a L.C of other vectors in S.

Proof. (a) ⇒ (b) Suppose that

0 6= v = a1s1 + . . .+ ansn and v = b1t1 + . . .+ bmtm

where the si’s are distinct and ti’s are distinct and the coefficients are nonzero. By

subtracting and grouping s’s and t’s that are equal, we can write

0 = (ai1 − bi1) si1 + . . .+ (aik − bi1) sik
+ aik+1

sik+1
+ . . .+ ainsin − bik+1

tik+1
− . . .− bimtim

(a) ⇒ m = n = k and aiu = biu and siu = tiu for all u = 1, . . . , k.

(b) ⇒ (c) and (c) ⇒ (a) is left as an exercise.

1.5 Direct sum and direct product of subspaces

Definition 1.5.1. Let V1, . . . , Vn be vector spaces over a field F . The external direct

sum of V1, . . . , Vn, denoted by V1 � . . . � Vn is the vector space V whose elements are

ordered n-tuples:

V = {(v1, . . . , vn) | vi ∈ Vi, i = 1, . . . , n}
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with componentwise operations

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) and

r(u1, . . . , un) = (ru1, . . . , run) for all r ∈ F.

Example 1.5.2. The vector space F n is the external direct sum of n copies of F , that

is, F n = F � . . .� F where there are n summands on the right hand side.

The above construction can be generalized to any collection of vector spaces by gen-
eralizing the idea that an ordered n-tuple (v1, . . . , vn) is just a function

f : {1, . . . , n} →
⋃

Vi,

i 7→ f(i) .

Definition 1.5.3. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

direct product of F is the vector space

∏
i∈I

Vi =

{
f : I →

⋃
Vi

∣∣∣∣ f(i) ∈ Vi
}

thought of as a subspace of the vector space of all functions from I to
⋃
Vi.

Note that∏
i∈I

Vi = {v = (vi)i∈I | vi ∈ Vi} =

{
f : I →

⋃
Vi

∣∣∣∣ f(i) ∈ Vi
}
.

If we define addition and scalar multiplication by

v + w =
(
f : I →

⋃
Vi

)
+
(
g : I →

⋃
Vi

)
=
(
f + g : I →

⋃
Vi

)
and

av = a
(
f : I →

⋃
Vi

)
=
(
af : I →

⋃
Vi

)
or by

(vi)i∈I + (wi)i∈I = (vi + wi)i∈I and

a(vi)i∈I = (avi)i∈I

Then the direct product
∏

i∈I Vi is a vector space over F .
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Definition 1.5.4. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

support of a function f : I →
⋃
Vi is the set

support(f) = {i ∈ I | f(i) 6= 0}.

We say that f has finite support if f(i) = 0 for all but a finite number of i ∈ I.

Definition 1.5.5. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

external direct sum of the family F is the vector space

ext⊕
i∈I

Vi =
{
f : I →

⋃
Vi
∣∣ f(i) ∈ Vi, f has finite support

}
.

thought of as a subspace of the vector space of all functions from I to
⋃
Vi.

If Vi = V for all i ∈ I,

• we denote the set of all functions from I to V by V I , and

• we denote the set of all functions in V I that have finite support by
(
V I
)
0
.

In this case, we have ∏
i∈I

V = V I and
ext⊕
i∈I

V =
(
V I
)
0
.

Definition 1.5.6. A vector space V is the internal direct sum of a family F = {Si | i ∈
I} of subspaces of V , written

V =
⊕
F or V =

⊕
i∈I

Si

if the following hold:

(1) (Join of the family) V is the sum (join) of the family V =
∑

i∈I Si

(2) (Independence of the family) For each i ∈ I,

Si
⋂(∑

j 6=i

Sj

)
= {0}.

In this case,

• each Si is called a direct summand of V .

• if F = {S1, . . . , Sn} is a finite family, the direct sum is often written V = S1 ⊕
. . .⊕ Sn.
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• if V = S ⊕ T , then T is called a complement of S in V .

If S and T are subspaces of V , then we may always say that the sum S + T exists.
However, to say that the direct sum of S and T exists or to write S⊕T is to imply that
S ∩T = {0}. Thus, while the sum of two subspaces always exists, the direct sum of two
subspaces does not always exist. Similar statements apply to families of subspaces of V .

Theorem 1.5.7. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

following are equivalent:

(1) ( Independence of the family) For each i ∈ I,

Si
⋂(∑

j 6=i

Sj

)
= {0}.

(2) ( Uniqueness of expression for 0) The zero vector cannot be written as a sum of

nonzero vectors from distinct subspaces of F .

(3) ( Uniqueness of expression) Every nonzero vector v ∈ V has a unique, except for

order of terms, expression as a sum

v = s1 + . . .+ sn

of nonzero vectors from distinct subspaces in F .

Hence, a sum

V =
∑
i∈I

Si

is direct if and only if any one of (1)-(3) holds.

Proof. (1) ⇒ (2) Suppose that (2) fails, that is,

0 = sj1 + . . .+ sjn

where the nonzero vectors sji ’s are from distinct subspaces of Sji . Then n > 1 and,

hence,

−sj1 = sj2 . . .+ sjn

which violates (1).

(2) ⇒ (3) If (2) holds and

v = s1 + . . .+ sn = t1 + . . .+ tn
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where the terms are nonzero and both the si’s and the ti’s belong to distinct subspaces

in F . Then

0 = s1 + . . .+ sn − t1 − . . .− tn.

Now, by collecting terms from the same subspaces, we may write

0 = (si1 − ti1) + . . .+ (sik − tik)

+ sik+1
+ . . .+ sin − tik+1

− . . .− tim .

Then (2) implies that m = n = k and siu = tiu for all u = 1, . . . , k.

(3) ⇒ (1)

0 6= v ∈ Si
⋂(∑

j 6=i

Sj

)
⇒ v = si ∈ Si and si = sj1 + . . .+ sjn

where sjk ∈ Sjk are nonzero which violates (3).

Example 1.5.8. Let A = {(x, 0) ∈ R2 | x ∈ R} and let B = {(0, y) ∈ R2 | y ∈ R}. Then

R2 = A⊕B since A∩B = {0} and R2 = A+B. Any element (x, y) of R2 can be written

as

(x, y) = (x, 0) + (0, y).

Proposition 1.5.9. Suppose U and W are subspaces of the vector space V over a field

F . Consider the map

α : U ⊕W → V

defined by α(u,w) = u+ w. Then

• α is injective if and only if U ∩W = {0}.

• α is surjective if and only if U ∪W spans V .

Example 1.5.10. Let A = {(x, 0) ∈ R2 | x ∈ R} and let C = {(y, y) ∈ R2 | y ∈ R}.
Then R2 = A⊕ C. To see this, note that the map

α : A⊕B → R2

(x, y) 7→ x+ y

is injective since A ∩ C = {0}. Moreover, α is a surjective map since any element (x, y)

of R2 can be written as

(x, y) = (x− y, 0)︸ ︷︷ ︸
∈A

+ (y, y)︸ ︷︷ ︸
∈C

.

Thus, by the above proposition A ∪ C spans R2.
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Example 1.5.11. Let A ∈Mn be a matrix. Then A can be written in the form

A =
1

2
(A+ At) +

1

2
(A− At) = B + C (1.2)

where At is the transpose of A. Verify that B is symmetric and C is skew-symmetric.

Thus (1.2) is a decomposition of A as a sum of a symmetric matrix (At = A) and a

skew-symmetric matrix (At = −A).

Exercise 1.5.12. Show that the sets Sym and SkewSym of all symmetric and skew-

symmetric matrices in Mn are subspaces of Mn.

Thus, we have

Mn = Sym + SkewSym.

Furthermore, if S, S ′ ∈ Sym and T, T ′ ∈ SkewSym such that S + T = S ′ + T ′, then the

matrix

U = S − S ′ = T − T ′ ∈ Sym ∩ SkewSym.

Hence, provided that char(F ) 6= 2, we must have U = 0. Thus,

Mn = Sym⊕ SkewSym.

1.6 Bases of a Vector Space

Theorem and Definition 1.6.1. Let S be a set of vectors in V . The following are

equivalent:

(i) S is L.I and spans V .

(ii) Every nonzero vector v ∈ V is an essentially unique L.C of vectors in S.

(iii) S is a minimal spanning set, that is, S spans V but any proper subset of S does

not span V .

(iv) S is a maximal L.I set, that is, S is L.I but any proper superset of S is not L.I.

A set of vectors in V that satisfies any (and hence all) of these conditions is called a

basis for V .

Proof. (i) ←→ (ii) by Theorem 1.4.3.

(i) ⇒ (iii) By given S is L.I and a spanning set, V = span(S). Suppose that any

proper subset S ′ of S spans V . Let s ∈ S − S ′. Since s ∈ V , s is a L.C of the vectors in

S ′ which is a contradiction to the fact that S is L.I.
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(iii) ⇒ (i) If S is a minimal spanning set, then it must be L.I. For if not, some vector

s ∈ S would be a L.C of the other vectors in S, S − {s}. Then S − {s} would be a

proper spanning subset of S which is not possible.

(i) ⇔ (iv): exercise

Example 1.6.2.

(1) Find a basis of the subspace of R3 given by

V =


xy
z

 ∈ R3

∣∣∣∣ x− 2y + 5z = 0

 .

Solution: Let v =

xy
z

 be any vector in V . Then

v =

xy
z

 =

2y − 5z

y

z

 =

2y

y

0

+

−5z

0

z


= y

2

1

0

+ z

−5

0

1

 , y, z ∈ R.

This shows that the set

{u, v} =


2

1

0

 ,

−5

0

1




spans V . It is easy to see that the set {u, v} is L.I. Thus it is a basis for the subspace

V of R3.

(2) The set S =

{(
1

2

)
,

(
1

−1

)}
is a basis of R2.

(3) The ith standard vector in F n is the vector ei that has 0’s in all coordinate positions

except the ith, where it has a 1. Thus,

e1 = (1, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1).

The set {e1, . . . , en} is called the standard basis for F n.
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Theorem 1.6.3. Let V be a nonzero vector space. Let I be a L.I set in V and let S be

a spanning set in V containing I. Then there is a basis B for V for which I ⊂ B ⊂ S.

In particular,

(1) Any vector space, except the zero space {0}, has a basis.

(2) Any L.I set in V is contained in a basis.

(3) Any spanning set in V contains a basis.

1.7 Dimension of a Vector Space

The following theorem says that if a vector space V has a finite spanning set S, then
the size of any linearly independent set cannot exceed the size of S.

Theorem 1.7.1. Let V be a vector space and assume that the vectors v1, . . . , vn are L.I

and the vectors s1, . . . , sm span V . Then n ≤ m.

Corollary 1.7.2. If V has a finite spanning set, then any two bases of V have the same

size.

Theorem 1.7.3. If V is a vector space, then any two bases for V have the same cardi-

nality.

Definition 1.7.4. A vector space V is finite-dimensional if it is the zero space or if it

has a finite basis. All other vector spaces are infinite-dimensional. The dimension of

the a non-zero vector space V is the cardinality of any basis for V .

(a) The dimension of the zero space is 0.

(b) If a vector space V has a basis of cardinality k, we say that V is k-dimensional
and write dim(V ) = k.

(c) If S is a subspace of V , then dim(S) ≤ dim(V ). If in addition dim(S) = dim(V ) <
∞, then S = V .

Theorem 1.7.5. Let V be a vector space.

1) If B is a basis for V and if B = B1 ∪ B2 and B1 ∩ B2 = ∅, then V = 〈B1〉 ⊕ 〈B2〉.

2) Let V = S ⊕ T . If B1 is a basis for S and B2 is a basis for T , then B1 ∩ B2 = ∅
and B = B1 ∪ B2 is a basis for V .
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Proof. 1) If B1 ∩ B2 = ∅ and B = B1 ∪ B2 is a basis for V , then 0 6∈ B1 ∪ B2. But,

if a nonzero vector v ∈ 〈B1〉 ∩ 〈B2〉, then B1 ∩ B2 6= ∅, a contradiction. Hence, {0} =

〈B1〉 ∩ 〈B2〉. Furthermore, since B1 ∪ B2 is a basis for V and for 〈B1〉 + 〈B2〉, we must

have V = 〈B1〉+ 〈B2〉. Thus, V = 〈B1〉 ⊕ 〈B2〉.
2) If V = S ⊕ T , then S ∩ T = {0}. Since 0 6∈ B1 ∪ B2, we have B1 ∩ B2 = ∅. Let

v ∈ V . Then v has the form

a1u1 + . . .+ anun + b1v1 + . . .+ bmvm

for u1, . . . , un ∈ B1 and v1, . . . , vm ∈ B2 which implies v ∈ 〈B1 ∪ B2〉 and thus B1 ∪ B2 is

a basis for V by Theorem 1.6.1.

Theorem 1.7.6. Let S and T be subspaces of a vector space V . Then

dim(S) + dim(T ) = dim(S + T ) + dim(S ∩ T ).

In particular, if T is any complement of S in V , then

dim(S) + dim(T ) = dim(V ) = dim(S ⊕ T ).

Proof. Suppose that B = {vi | i ∈ I} is a basis for S ∩ T . Extend this to a basis A ∪ B
for S and to a basis B ∪ C for T , where A = {uj | j ∈ J} and C = {wk | k ∈ K},
A ∩ B = ∅ and C ∩ B = ∅.

Claim: A ∪ B ∪ C is a basis for S + T .

Clearly, 〈A∪B ∪ C〉 = S + T . It remains to show that the set A∪B ∪C is L.I. To see

this, suppose to the contrary that

α1 v1 + . . .+ αn vn = 0

where vi ∈ A ∪ B ∪ C and αi 6= 0 for all i. Then there must be vectors vi ∈ A ∩ C since

A ∪ B and B ∪ C are L.I. Now, isolating the terms involving the vectors from A, say

v1, . . . , vk without loss of generality, on one side of the equality shows that there is a

nonzero vector in x ∈ A ∩ 〈B ∪ C〉.
That is,

x = a1v1 + . . .+ akvk︸ ︷︷ ︸
∈ span(A)

= ak+1vk+1 + . . .+ anvn︸ ︷︷ ︸
∈ span(B∪C)

⇒ x ∈ span(A) ∩ span(B ∪ C) ⊂ S ∩ T = 〈B〉 (span(A) ⊂ S)

⇒ x ∈ 〈A〉 ∩ 〈B〉 = {0}
⇒ x = 0, a contradiction.
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Hence, A ∪ B ∪ C is L.I and a basis for S + T . Now,

dim(S) + dim(T ) = |A ∪ B|+ |B ∪ C|
= |A|+ |B|+ |B|+ |C|
= |A|+ |B|+ |C|+ dim(S ∩ T )

= dim(S + T ) + dim(S ∩ T ),

as desired.





Chapter 2

Linear Transformations

2.1 Linear Transformations

Roughly speaking, a linear transformation is a function from one vector space to another
that preserves the vector space operations.

Definition 2.1.1. Let V and W be vector spaces over a field F . A function τ : V → W

is a linear transformation (L.T) if

τ(u+ v) = τ(u) + τ(v) and τ(ru) = rτ(u)

for all scalars r ∈ F and vectors u, v ∈ V . The set of all linear transformations from

V → W is denoted by L(V,W ).

◦ A L.T from V to V is called a linear operator on V . The set of all linear operators

on V is denoted by L(V ).

◦ A linear operator on a real vector space is called a real operator and a linear

operator on a complex vector space is called a complex operator.

◦ A L.T from V to the base field F (thought of as a vector space over itself) is called
a linear functional on V . The set of all linear functions on V is denoted by V ∗

and called the dual space of V .

Definition 2.1.2. The following terms are also employed:

• homomorphism for L.T denoted also by Hom(V,W );

• endomorphism for L. operator denoted also by End(V );

• monomorphism (embedding) for injective L.T;

• epimorphism for surjective L.T;

15
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• isomorphism (invertible L.T) for bijective L.T τ ∈ L(V,W ). In this case,

we write V ∼= W to say that V and W are isomorphic. The set of all linear

isomorphisms from V to W is denoted GL(V,W ).

• automorphism for bijective L. operator. The set of all automorphisms of V is

denoted Auto(V ) or GL(V ).

Example 2.1.3.

} The derivative D : V → V is a linear operator on the vector space V of all infinitely

differentiable functions on R.

} Let V = R2 and let W = R. Define L : V → W by f(v, w) = vw. Is L a L.T?

} The integral operator τ : F [x]→ F [x] defined by

τ(f) =

∫ x

0

f(t)dt

is a linear operator on F [x].

} Let V = R2 and let W = R3. Define L : V → W by L(v, w) = (v, w − v, w). Is L

a L.T?

} Let A be an m× n matrix over F . The function

τA : F n → Fm,

v 7→ Av,

where all vectors are written as column vectors, is a L.T from F n → Fm.

Note:

� The set L(V,W ) is a vector space in its own right.

� The identity transformation, IV : V → V , given by IV (x) = x for all x ∈ V .
Clearly, since IV (av + bu) = av + bu = aIV (u) + bIV (v), IV is L.T.

� The zero transformation, τ0 : V → W , given by τ0(x) = 0 for all x ∈ V , is a L.T.

� If τ ∈ L(V ) such that τ 2 = τ , we call τ an idempotent operator.
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2.2 Basic properties of Linear Transformations

In the following we collect a few facts about linear transformations:

Theorem 2.2.1. Let τ be a L.T from a vector space V into a vector space W . Then

i) τ(0) = 0.

ii) τ(−v) = −τ(v) for all v ∈ V .

iii) τ(u− v) = τ(u)− τ(v) for all u, v ∈ V .

iii) τ (
∑n

k=1 akvk) =
∑n

k=1 akτ(vk) for all v1, . . . , vk ∈ V .

Theorem 2.2.2. Let V and W be vector spaces over over a field F and let B = {vi |
i ∈ I} is a basis for V . Then for any τ ∈ L(V,W ), we have im(τ) = 〈τ(B)〉.

Theorem 2.2.3.

a) The set L(V,W ) is a vector space under ordinary addition of functions and scalar

multiplication of functions by elements of F .

b) If σ ∈ L(U, V ) and τ ∈ L(V,W ), then the composition τσ is in L(U,W ).

c) If τ ∈ L(V,W ) is bijective, then τ−1 ∈ L(W,V ).

Proof. b) Since for all scalars r, s ∈ F and vectors u, v ∈ U

τσ(ru+ sv) = τ(rσ(u) + sσ(v)) (σ ∈ L(U, V ))

= r(τσ(u)) + s(τσ(v)) (τ ∈ L(V,W ))

⇒ τσ ∈ L(U,W ).

c) Let τ : V → W be a bijective L.T. Then τ−1 : W → V is a well-defined function

and since any two vectors w1 and w2 in W have the form w1 = τv1 and w2 = τv2, we

have

τ−1(rw1 + sw2) = τ−1(rτv1 + sτv2)

= τ−1(τ(rv1 + sv2))

= rv1 + sv2

= rτ−1(w1) + sτ−1(w2)

⇒ τ−1 ∈ L(V,W ) .
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One of the easiest ways to define a L.T is to give its values on a basis.

Theorem 2.2.4. Let V and W be vector spaces and let B = {vi | i ∈ I} be a basis for

V . Then we can define a L.T τ ∈ L(V,W ) by specifying the values of τ(vi) arbitrarily

for all vi ∈ B and extending τ to V by linearity, that is,

τ(a1v1 + . . .+ anvn) = a1τ(v1) + . . .+ anτ(vn).

This process defines a unique L.T, that is, if τ, σ ∈ L(V,W ) satisfying τ(vi) = σ(vi) for

all vi ∈ B, then τ = σ.

Note that if τ ∈ L(V,W ) and if S is a subspace of V , then the restriction τ |S of τ to
S is a L.T from S to W .

2.3 The Kernel and Image of a L.T

Definition 2.3.1. Let τ ∈ L(V,W ).

� The subspace

ker(τ) = {v ∈ V | τ(v) = 0}

is called the kernel of τ .

� The subspace

im(τ) = {τ(v) ∈ W | v ∈ V }

is called the image of τ .

� The dimension of ker(τ) is called the nullity of τ and is denoted by null(τ).

� The dimension of im(τ) is called the rank of τ and is denoted by rk(τ).

Remark and Exercise 2.3.2.

� ker(τ) is a subspace of V .

� im(τ) is a subspace of W .

Theorem 2.3.3. Let τ ∈ L(V,W ). Then

1) τ is surjective if and only if im(τ) = W .

2) τ is injective if and only if ker(τ) = {0}.
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Proof. 1) is clear. 2) Observe that,

τ(v) = τ(u)⇔ τ(v − u) = 0⇔ u− v ∈ ker(τ) = {0}

which implies u = v and, hence, τ is injective. Conversely, suppose τ is injective and

u ∈ ker(τ). Then τ(u) = 0 = τ(0) and, hence, u = 0.

Theorem 2.3.4. Let τ ∈ L(V,W ) be an isomorphism. Let S ⊂ V . Then

a) S spans V if and only if τ(S) = {τ(u) | u ∈ S} spans W .

b) S is L.I in V if and only if τ(S) is L.I in W .

c) S is a basis for V if and only if τ(S) is a basis for W .

Proof. a) V = 〈S〉 ⇔ W = im(τ) = τ(〈S〉) = 〈τ(S)〉 (since τ ∈ GL(V,W )).

b) By given S is L.I. For any s1, . . . , sn ∈ S, we have

n∑
i=1

aisi = 0⇔ ai = 0 for all i,

which implies

τ

(
n∑
i=1

aisi

)
=

n∑
i=1

aiτ(si) = 0 = τ(0)

⇒
n∑
i=1

aisi = 0 (τ ∈ GL(V,W ))

⇒ a1 = . . . = an = 0 (S is L.I )

⇒ τ(S) is L.I ( since this is true for all si ∈ S).

Conversely, if τ(S) is L.I we have for any τ(s1), . . . , τ(sn) ∈ τ(S)

0 =
n∑
i=1

aiτ(si) = τ

(
n∑
i=1

aisi

)
= τ(0)

⇒
n∑
i=1

aisi = 0 (τ ∈ GL(V,W ))

⇒ a1 = . . . = an = 0 (τ(S) is L.I )

⇒ S is L.I .

c) S is a basis for V iff, by a) and b), τ(S) is L.I in W and W = 〈τ(S)〉 which implies

τ(S) is a basis for W .
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Isomorphisms Preserve Bases

An isomorphism can be characterized as a L.T τ : V → W that maps a basis for V to a
basis for W .

Theorem 2.3.5. A L.T τ ∈ L(V,W ) is an isomorphism if and only if there is a basis

B for V for which τ(B) is a basis for W . In this case, τ maps any basis of V to a basis

of W .

Proof. τ ∈ GL(V,W ) ⇒ τ is bijective. Thus by Theorem 2.2.2 τ(B) is a basis for W .

Conversely, if τ(B) is a basis for W , then for all v ∈ V , there exist unique elements

a1, . . . , an ∈ F and u1, . . . , un such that u = a1u1 + . . .+ anun. Therefore,

0 = τ(u) = a1τ(u1) + . . .+ anτ(un)

⇒ a1 = . . . = an = 0

⇒ ker(τ) = {0}
⇒ τ is injective.

Since W = 〈τ(B)〉, we have for all w ∈ W there exist unique elements a1, . . . , an ∈ F
such that

w = a1τ(u1) + . . .+ anτ(un) = τ(a1u1 + . . .+ anun).

So there exists u = a1u1 + . . . + anun ∈ V such that w = τ(u) ∈ τ(V ) = im(τ)

which implies W ⊂ im(τ). Clearly, im(τ) ⊂ W and, hence, τ is surjective. Thus τ is

bijective.

Isomorphisms Preserve Dimension

The following theorem says that, upto isomorphism, there is only one vector space of
any given dimension over a given field.

Theorem 2.3.6.

(i) Let V and W be vector spaces over F . Then V ∼= W if and only if dim(V ) =

dim(W ).

(ii) If n is a natural number, then any n-dimensional vector space over F is isomorphic

to F n.

Proof. (i) V ∼= W ⇒ ∃τ ∈ GL(V,W ). Thus B is a basis for V implies τ(B) is a

basis for W and dim(V ) = |B| = |τ(B)| = dim(W ). Conversely, if dim(V ) = |B1| =

|B2| = dim(W ), where B1 (resp. B2) is a basis for V (resp. W ), then ∃τ ∈ GL(B1,B2).
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Extending τ to V by linearity defines a unique τ ∈ L(V,W ) by Theorem 2.2.4 and τ is an

isomorphism because it is surjective and injective, that is, im(τ) = W and ker(τ) = {0}.
(ii) Clear by (i).

2.4 The Rank-Nullity Theorem

Lemma 2.4.1. If V and W are vector spaces over a field F and τ ∈ L(V,W ), then any

complement of the kernel τ is isomorphic to the range of τ , that is,

V = ker(τ)⊕ ker(τ)c ⇒ ker(τ)c ∼= im(τ)

where ker(τ)c is any complement of ker(τ).

Proof. V = ker(τ) ⊕ ker(τ)c ⇒ dim(V ) = dim (ker(τ)) + dim (ker(τ)c). Let τ c be the

restriction of τ to ker(τ)c. That is,

τ c : ker(τ)c → im(τ).

We claim that the map τ c is bijective.

To see this, note that the map τ c is injective since

ker(τ c) = ker(τ) ∩ ker(τ)c = {0}.

Clearly, im(τ c) ⊂ im(τ). For the reverse inclusion, if τ(v) ∈ im(τ), then since v = u+w
for u ∈ ker(τ) and w ∈ ker(τ)c, we have

τ(v) = τ(u) + τ(w) = τ(w) = τ c(w) ∈ im(τ c).

Thus im(τ c) = im(τ) which implies

τ c : ker(τ)c → im(τ)

is an isomorphism.

Theorem 2.4.2 (Rank-Nullity Theorem). Let V and W be vector spaces over a field

F and let τ ∈ L(V,W ). Then

dim(ker(τ)) + dim(im(τ)) = dim(V)

or in other notation

rk(τ) + null(τ) = dim(V)
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Proof.

dim(V ) = dim(ker(τ)) + dim(ker(τ)c)

= dim(ker(τ)) + dim(im(τ)) (Lemma 2.4.1)

= null(τ) + rk(τ)

which completes the proof.

Corollary 2.4.3. Let V and W be vector spaces over a field F and τ ∈ L(V,W ). If

dim(V ) = dim(W ), then the following are equivalent:

i) τ is injective.

ii) τ is surjective.

iii) rk(τ) = dim(V ).

Proof. By the Rank-Nullity Theorem, rank(τ) + null(τ) = dim(V ) and , we have

τ is 1-1
Thm 2.3.3

⇔
ker(τ) = null(τ) = {0}

R-N Thm

⇔
dim(im(τ)) = rk(τ) = dim(V )

assu.

=
dim(V )

⇔ im(τ) = W

⇔ τ is onto which completes the proof.

2.5 Linear Transformations from F n to Fm

Recall that for any m× n matrix A over F the multiplication map

τA(v) = Aτ

is a L.T. In fact, any L.T τ ∈ L(F n, Fm) has this form, that is, τ is just multiplication
by a matrix, for we have

(τ(e1)| · · · |τ(en)) ei = (τ(e1)| · · · |τ(en))(i) = τ(ei)

and so τ = τA, where A = (τ(e1)| · · · |τ(en)). Here any vector v ∈ F n can be written as

v = (v1, . . . , vn) = v1e1 + . . .+ vnen.
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The map τ sends any vector (v1, . . . , vn) to (w1, . . . , wm), that is,

τ : F n → Fm

v 7→ Av := w,

where w1
...
wm

 =

a11 · · · a1n
...

. . .
...

am1 · · · amn


v1...
vn

 .

The matrix A is called the standard matrix of τ .

Example 2.5.1. Consider the linear transformation

τ : F 3 → F 3

(x, y, z) 7→ (x− 2y, z, x+ y + z).

Then we have in column formxy
z

 =

1 −2 0

0 0 1

1 1 1


xy
z

 .

So the standard matrix of τ is

A =

1 −2 0

0 0 1

1 1 1

 .

Theorem 2.5.2.

a) If A is an m× n matrix over F , then τA ∈ L(F n, Fm).

b) If τ ∈ L(F n, Fm), then τ = τA, where A = (τe1| · · · |τen). The matrix A is called

the matrix of τ .

f A ∈Mm,n, then since the image of τA is the column space of A, we have

dim(ker(τA)) + rk(A) = dim(F n).

Theorem 2.5.3. Let A be an m× n matrix over F .

1) τA : F n → Fm is injective iff rk(A) = n.

2) τA : F n → Fm is surjective iff rk(A) = m.



24 2. Linear Transformations

Example 2.5.4. Find rk(A) and null(A) for

A =


−2 −5 8 0 −17

1 3 −5 1 5

3 11 −19 7 1

1 7 −13 5 −3

 .

Note that

} the rank of A equals the number of nonzero rows in the row echelon form, which

equals the number of leading entries.

} the nullity of A equals the number of free variables in the corresponding system,

which equals the number of columns without leading entries.

The reduced echelon form of A is
1 3 −5 1 5

0 1 −2 2 −7

0 0 0 1 −5

0 0 0 0 0

 .

and thus rk(A) = 3.

Note that the reduced echelon form of the above matrix is
1 0 1 0 1

0 1 −2 0 3

0 0 0 1 −5

0 0 0 0 0

 .

To determine nullity, we need to find a basis for the solution set of Ax = 0, that is,

to find the solution set of the system of equations

x1 + x2 + x5 = 0

x2 − 2x3 + 3x5 = 0

x4 − 5x5 = 0 .

In this equation, the leading variables are x1, x2 and x4. Hence, the free variables are

x3 and x5 which implies null(A) = 2. In fact, we can write the solution in parametric

form as follows:

x1 = −s− t, x2 = 2s− 3t, x3 = s, x4 = 5t, x5 = t.



2.6. Matrix Representation of a L.T 25

From this we have, 
x1

x2

x3

x4

x5

 = s


−1

2

1

0

0

+ t


−1

−3

0

5

1

 .

Thus, null(A) = 2, as desired. Moreover, we have

dim(ker(τA)) + rk(A) = 5 = dim(R5).

Example 2.5.5. Find the L.T τ : R2 → R2 that perpendicularly projects both of the

vectors e1 and e2 onto the line x1 = x2.

Solution:

2.6 Matrix Representation of a L.T

Definition 2.6.1. Let V be a vector space of dimension n. An ordered basis for V is

an ordered n-tuple (v1, . . . , vn) of vectors for which the set {v1, . . . , vn} is a basis for V .

Definition 2.6.2. Let B = (v1, . . . , vn) be an ordered basis for V and let v ∈ V . Then

there exist unique scalars r1, . . . , rn ∈ F such that v =
∑n

i=1 rivi. These scalars are

called the coordinates of v w.r.t. B. Define the map φB : V → F n by

φB(v) = [v]B =

r1...
rn

 .
The vector [v]B = (r1, . . . , rn) ∈ F n is called the coordinate vector of v w.r.t. B (or

coordinate matrix when the vector [v]B is viewed as column matrix) and the map φB is

called the coordinate map.

Note that the coordinate map φB is a bijective L.T. τ is linear since

[r1v1 + . . .+ rnvn]B = r1[v1]B + . . .+ rn[vn]B .

Example 2.6.3.

1) Let v ∈ V . If B = (e1, . . . , en) ∈ V , then [v]B = v.

2) If v = (3, 4) and B = ((1,−1), (1, 1)), then [v]B =

(
−1/2

7/2

)
.
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3) If v = (3, 4) and B = (v, (0, 1)), then [v]B =

(
1

0

)
.

Definition 2.6.4. Let τ ∈ L(V,W ) with dim(V ) = n and dim(W ) = m. Let B =

(v1, . . . , vn) be an ordered basis for V and C an ordered basis for W . Then the map

θ : [v]B → [τ(v)]C

is a representation of τ as a L.T from F n to Fm, in the sense that knowing θ along with

B and C is equivalent to knowing τ .

In this definition, the representation θ of τ depends on the choice of ordered bases B
and C. Since θ is a L.T from F n to Fm, it is just multiplication by an m× n matrix A,
that is, [τ(v)]C = A[v]B. Indeed, since [vi]B = ei, we get the columns of A as follows:

A(i) = Aei = A[vi]B = [τ(vi)]C .

Theorem and Definition 2.6.5. Let τ ∈ L(V,W ) and let B = (v1, . . . , vn) and C be

ordered bases for V and W , respectively. Then τ can be represented w.r.t. B and C as

matrix multiplication, that is,

[τ(v)]C = [τ ]B,C[v]B

where

[τ ]B,C =
[
[τ(v1)]C| · · · |[τ(vn)]C

]
is called the matrix of τ w.r.t. the bases B and C. When V = W and B = C, we denote

[τ ]B,B by [τ ]B and so [τ(v)]B = [τ ]B[v]B.

Example 2.6.6.

1) Let D : P2 → P2 be the derivative operator, defined on the vector space of all

polynomials of degree at most 2. Let B = C = (1, x, x2). Then

[D(1)C] = [0]C =

0

0

0

 , [D(x)C] = [1]C =

1

0

0

 ,

[D(x2)]C = [2x]C =

0

2

0

 and so

[D]B =

0 1 0

0 0 2

0 0 0


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For example, if p(x) = 5 + x+ 2x2, then

[D(p(x))]C = [D]B,C[p(x)]B = [D]B[p(x)]B =

0 1 0

0 0 2

0 0 0


5

1

2

 =

1

4

0


and so D(p(x)) = 1 + 4x.

2) Consider the map

D : R3[x]→ R2[x],

f 7→ D(f) = f ′.

Let B = (1, x, x2) and C = (1, x, x2, x3) are the standard ordered bases for R2[x]

and R3[x], respectively. Then

[D]B,C =

0 1 0 0

0 0 2 0

0 0 0 3

 .

3) If τ ∈ L(R2,R3) is given by τ(x1, x2) = (x1 + 3x2, 0, 2x1 − 4x2), and B = (e1, e2)

and C = (e1, e2, e3) are the standard bases for R2 and R3, respectively. Then

[τ ]B,C =

1 3

0 0

2 −4

 .

Theorem 2.6.7. Let V and W be finite-dimensional vector spaces over F , with ordered

bases B = (b1, . . . , bn) and C = (c1, . . . , cm), respectively.

1) The map µ : L(V,W )→Mm,n(F ) defined by µ(τ) = [τ ]B,C is an isomorphism and

so L(V,W ) ∼=Mm,n(F ). Hence,

dim(L(V,W )) = dim(Mm,n(F )) = m× n .

2) If σ ∈ L(U, V ) and τ ∈ L(V,W ) and if B, C,D are ordered bases for U, V and W

respectively, then

[τσ]B,D = [τ ]C,D[σ]B,C .

Thus, the matrix of the product (composition) τσ is the product of the matrices of

τ and σ.
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Proof. Since for all i,

[sσ + tτ ]B,C[bi]B = [(sσ + tτ)(bi)]C

= [sσ(bi) + tτ(bi)]C

= s[σ(bi)]C + t[τ(bi)]C

= s[σ]B,C[bi]B + t[τ ]B,C[bi]B

= (s[σ]B,C + t[τ ]B,C) [bi]B

and since [bi]B = ei is the standard basis vector, we conclude that

[sσ + tτ ]B,C = s[σ]B,C + t[τ ]B,C,

that is, µ is linear.

Let A ∈ Mm,n, then there exists τ ∈ L(V,W ) defined by [τ(bi)]C = A(i) such that

µ(τ) = A and, hence, µ is surjective. Also, ker(µ) = {0} since [τ ]B = 0.

Proof of part 2)

[τσ]B,D[τ ]B = [τ(σ(v))]D = [τ ]C,D[σ(v)]C = [τ ]C,D[σ]B,C[v]B.



Chapter 3

Diagonalization and Inner Product

Spaces

3.1 Eigenvalues and Eigenvectors, Diagonalization

Definition 3.1.1. Let τ : V → V be a L.T of the vector space V to itself. Let v be a

non-zero vector in V . We say that v is said to be an eigenvector of tau if there exists

λ ∈ F with τ(v) = λv. The scalar λ is called the eigenvalue of τ corresponding to v.

Example 3.1.2. Let V be the set of all infinitely differentiable functions and let

τ = D : V → V derivative operator .

Then, v(x) = eλx is an eigenvector of τ because

τ(v) = D(v) = λeλx = λv .

Recall from Chapter 2 that τ(v) = Av, where A is the matrix of τ . Thus Av = λv.

Example 3.1.3. Let

A =

1 0 1

0 4 0

6 0 0

 .

Then v =

3

0

6

 is an eigenvector of A with eigenvalue λ = 3. To see this,

Av =

 9

0

18

 = 3

3

0

6

 = 3v .

29
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Remark 3.1.4.

a) The eigenvector corresponding to a given eigenvalue is not unique. In fact, any

multiple of an eigenvector is an eigenvector with the same eigenvalue.

b) It is possible for multiple L.I eigenvectors to have the same eigenvalue.

Definition 3.1.5. The characteristic equation of a square matrix of order n is the nth

order (or possibly lower order) polynomial det(A− λI) = 0.

Example 3.1.6. Consider the matrix

A =

1 0 3

4 5 0

0 3 1

 .

The characteristic equation of A is

0 = det(A− λI)

=

∣∣∣∣∣∣∣
1− λ 0 3

4 5− λ 0

0 3 1− λ

∣∣∣∣∣∣∣
= (1− λ)(5− λ)(1− λ) + 3 · 4 · 3
= −λ3 + 7λ2 − 11λ+ 41.

The characteristic polynomial of a given square matrix A is denoted by χA. From the
above example, we have

χA(λ) = −λ3 + 7λ2 − 11λ+ 41.

Theorem 3.1.7. The eigenvalues of a square matrix A are the roots of its characteristic

polynomial.

Proof. By definition, λ is an eigenvalue of A if and only if there is a non-zero vector v

such that Av = λv. But

Av = λv ⇐⇒ Av − λv = 0

⇐⇒ (A− λI) · v = 0

⇐⇒ det(A− λI) = χA(λ) = 0 .

Hence, λ is a root of the characteristic polynomial.



3.1. Eigenvalues and Eigenvectors, Diagonalization 31

Example 3.1.8. The characteristic polynomial of the matrix

A =

2 −2 3

1 1 1

1 3 −1


is

χA(λ) = −(λ+ 2)(λ− 3)(λ− 1) .

Thus, by Theorem 3.1.7 the eigenvalues of A are the roots of χA = 0. These are −2, 1

and 3.

Example 3.1.9. Find eigenvectors of the matrix given in Example 3.1.8.

Solution: The eigenvalues of A are −2, 1 and 3, see Example 3.1.8. In the following
we see that how to find eigenvectors of A corresponding to λ = −2. One can then
similarly find eigenvectors of A corresponding to the other eigenvalues. To find the
eigenvectors of A corresponding to λ = −2, we solve the system

Av = −2v.

That is, 2 −2 3
1 1 1
1 3 −1

v1v2
v3

 = −2

v1v2
v3

 (3.1)

for v1, v2, v3. This system is equivalent to

4v1 − 2v2 + 3v3 = 0

v1 + 3v2 + v3 = 0 .

From these system of equations, we obtain v3 = −14v2 and v1 = 11v2. Thusv1v2
v3

 =

 11v2
v2
−14v2

 = v2

 11
1
−14

 .

This implies the vector v =

 11
1
−14

 is an eigenvector of A w.r.t. λ = −2.

Note that kv where k ∈ F is also an eigenvector. That is the eigenvector is never
unique. For example, if v is an eigenvector of A with eigenvalue λ, then

A(kv) = kAv = kλv

which implies kλ is also an eigenvalue of A.
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Definition 3.1.10. A diagonal matrix is a square matrix that all of its non-zero entries

are on the main diagonal.

Theorem 3.1.11. Let A be an n × n diagonal matrix. Then the eigenvalues of A are

the elements of the diagonal.

Proof. Let the diagonal elements be d1, . . . , dn. By Theorem 3.1.7 the eigenvalues of A

are the roots of the characteristic polynomial

χA(λ) = det(A− λI)

=

∣∣∣∣∣∣∣∣∣∣
d1 − λ 0 · · · 0

0 d2 − λ · · · 0
... · · · . . .

...

0 0 · · · dn − λ

∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

(di − λ) .

of A. Thus, d1, . . . , dn are eigenvalues of A.

Theorem 3.1.12. The determinant of an n×n diagonal matrix A is the product of the

eigenvalues:

det(A) =
n∏
i=1

λi .

Proof. Let λ1, . . . , λn be diagonal elements of A. Then the characteristic polynomial of

A is

det(λI − A) = χA(λ) =
n∏
i=1

(λ− λi)

⇒ χA(0) = (−1)n
n∏
i=1

λi = det(−A)

⇒ χA(0) = (−1)ndet(A)

⇒ det(A) =
n∏
i=1

λi .

Definition 3.1.13. The trace of a square matrix A, denoted by tr(A), is the sum of its

diagonal elements.
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Theorem 3.1.14. Let A be an n× n square matrix. The trace of A is equal to the sum

of the eigenvalues:

tr(A) =
n∑
i=1

aii =
n∑
i=1

λi .

Definition 3.1.15. An upper (resp. lower) triangular matrix a square matrix that only

has non-zero entries on above (resp. below) the main diagonal.

Theorem 3.1.16. The eigenvalues of an upper (resp. lower) triangular matrix lie on

the main diagonal.

Proof. Let A be an upper triangular matrix with d1, d2, . . . on the diagonal. The char-

acteristic equation is

0 = det(A− λI)

=

∣∣∣∣∣∣∣∣∣∣
d1 − λ 0 · · · 0

0 d2 − λ · · · 0
... · · · . . .

...

0 0 · · · dn − λ

∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

(di − λ)

where the determinant is expanded by the first column. Hence, the roots are d1, d2, . . ..

A similar calculation holds for lower triangular matrices, expanding the determinant by

the first row.

Definition 3.1.17. A square matrix A is invertible if and only if det(A) 6= 0.

Theorem 3.1.18. If k is a positive integer, λ is an eigenvalue of a matrix A, and v

is a corresponding eigenvector, then λk is an eigenvalue of Ak and v is a corresponding

eigenvector.

Example 3.1.19. Consider the matrix

A =

0 0 −2

1 2 1

1 0 3

 .

Verify that λ1 = 2 and λ2 = 1 are eigenvalues of A. Then the eigenvalues of A3, by

Theorem 3.1.18, are 8 and 1, respectively.

Exercise 3.1.20. Show that
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i) the vectors

v =

−1

0

1

 and u =

0

1

0


are eigenvectors of A and A3 corresponding to λ1 = 2.

ii) the vector

v =

−2

1

1


is an eigenvector of A and A3 corresponding to λ2 = 1.

Theorem 3.1.21. A square matrix A is invertible if and only if λ = 0 is not an eigen-

value of A.

Proof. Assume that A is an n×n matrix. Suppose λ = 0 is a solution of the characteristic

equation λn + c1λ
n−1 + . . .+ cn = 0 if and only if the constant term cn is zero. Thus it

suffices to show that A is invertible if and only if cn 6= 0. Now

χA(λ) = det(λI − A)

= λn + c1λ
n−1 + . . .+ cn

=⇒ cn = χA(0) = det(−A) = (−1)ndet(A)

det(A) = 0⇐⇒ cn = 0

Example 3.1.22. The matrix given in Example 3.1.9 is invertible since λ1 = 2 and

λ2 = 1 are both non-zero.

Theorem 3.1.23. Let τ : Rn → Rn be a L.T and let A be an n× n matrix of τ . Then

the following are equivalent:

a) A is invertible.

b) kerτ = {0}.

c) det(A) 6= 0.

d) Imτ = Rn.

e) τ is 1-1.
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f) The column (row) vectors of A are L.I.

g) The column (row) vectors of A span Rn.

h) The column (row) vectors of A form a basis for Rn.

i) rk(A) = n and null(A) = 0.

j) ATA is invertible.

k) λ = 0 is not an eigenvalue of A.

Definition 3.1.24. A square matrix A is diagonalizable if and only if there exists an

invertible matrix P such that P−1AP = D, a diagonal matrix. In this case, the matrix

P is said to diagonalize A.

Let

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 p2n · · · pnn

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Since P−1AP = D =⇒ AP = PD,

PD =

λ1
p11...
pn1

 · · ·λn
p1n...
pnn


 .

But

AP =

A
p11...
pn1

 · · ·A
p1n...
pnn


 .

comparing with sides, we have

A

p1i...
pni

 = λi

p1i...
pni


Letting

pi =

p1i...
pni


we have

Api = λipi . (3.2)

Thus, the i-th column of P is an eigenvector in F n with eigenvalue λi.
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Example 3.1.25. Let A =

(
−2 1

1 −2

)
. Find, if possible, an invertible matrix P with

P−1AP = D is a diagonal matrix.

Solution:

0 = det(A− λI)

=

∣∣∣∣∣−2− λ 1

1 −2− λ

∣∣∣∣∣
= λ2 + 4λ+ 3 = (λ+ 1)(λ+ 3)

Thus, λ = −1 and λ = −2 are eigenvalues of A. If λ = −3, then

(A− λI)

(
x1

x2

)
=

(
0

0

)
⇐⇒

(
1 1

1 1

)(
x1

x2

)
=

(
0

0

)
⇐⇒ x1 = −x2

⇐⇒

(
x1

x2

)
=

(
−x2
x2

)
= x2

(
−1

1

)
.

Therefore, corresponding to λ = −3, we have an eigenvector v1 =

(
−1

1

)
.

If λ = −1, then

(A− λI)

(
x1

x2

)
=

(
0

0

)
⇐⇒

(
−1 1

1 −1

)(
x1

x2

)
=

(
0

0

)
⇐⇒ x1 = x2

⇐⇒

(
x1

x2

)
=

(
x2

x2

)
= x2

(
1

1

)
.

Therefore, corresponding to λ = −1, we have an eigenvector v2 =

(
1

1

)
. Set P = [v1 v2].

Then

P =

(
−1 1

1 1

)
=⇒ P−1 =

(
−1/2 1/2

1/2 1/2

)

=⇒ P−1AP =

(
−3 0

0 −1

)
.
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Theorem 3.1.26. Let A be an n× n matrix. Then the following are equivalent:

a) A is diagonalizable.

b) A has n L.T eigenvectors.

Proof. a) =⇒ b) Since A is assumed diagonalizable, there is an invertible matrix

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...

pn1 p2n · · · pnn


such that P−1AP is diagonal, say P−1AP = D, where

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


Since AP = PD, by (3.2), we have Api = λipi where pi the ith column vector which is

also an eigenvector corresponding to λi. By Theorem 3.1.23, p1, . . . , pn are L.I since P

is invertible. Thus, A has n L.I eigenvectors.

b) =⇒ a) Assume that A has n L.I eigenvectors p1, . . . , pn with corresponding eigen-

values λ1, . . . , λn. Let P = [p1| · · · pn] be the matrix with p1, . . . , pn are column vectors.

But the column vectors of AP are Ap1, . . . , Apn and

Api = λipi∀i = 1, . . . , n

=⇒ AP = [Ap1| · · · |Apn]

= [λ1p1| · · · |λnpn]

= [p1| · · · |pn]D with D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


= PD

Thus by definition P diagonalizes A or A is diagonalizable.
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Procedure for Diagonalizing a Matrix

Given an n × n diagonalizable matrix A, the constructive proof of the above theorem
provides the following method to diagonalize A:

Step 1 Find n L.I eigenvectors of A, say p1, . . . , pn.

Step 2 Form the matrix P having p1, . . . , pn as its column vectors.

Step 3 The matrix P−1AP will then be diagonal with λ1, . . . , λn as its successive diagonal
entries, where λ is the eigenvalue corresponding to pi for i = 1, . . . , n.

Example 3.1.27. Find a matrix P that diagonalizes

A =

0 0 −2

1 2 1

1 0 3

 .

Soulution: Verify that χAλ = (λ − 1)(λ − 2)2. Thus λ = 1 and λ = 2 are eigenvalues

of A. Recall from Example 3.1.19 that

p1 =

−1

0

1

 and p2 =

0

1

0

 , and p3 =

−2

1

1


are eigenvectors corresponding to λ = 2 and λ = 1, respectively.

Exercise 3.1.28. Show that the vectors p1, p2 and p3 are L.I.

Thus, the matrix P = [p1 p2 p3] diagonalizes A by Theorem 3.1.26 and hence

P−1AP =

2 0 0

0 2 0

0 0 1

 .

Note that changing the order of P just changes the order of the eigenvalues on the

main diagonal of P−1AP . Thus if we had written P =

−1 −2 0
0 1 1
1 1 0

, we would have

obtained

P−1AP =

2 0 0
0 1 0
0 0 2

 .
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Example 3.1.29. Given the matrix

A =

 1 0 0

1 2 0

−3 5 2

 ,

there does not exist a matrix P that diagonalizes A. Because χA(λ) = (λ − 1)(λ − 2)2

and the bases for the eigenspaces are

λ = 1 : p1 =

 1/8

−1/8

1

 , λ = 2 : p2 =

0

0

1

 .

Since A is 3 × 3 and there are only two basis vectors in total, by Theorem 3.1.26, A is

not diagonalizable.

Theorem 3.1.30. Let v1, . . . , vk be eigenvectors of a matrix A and let λ1, . . . , λk be the

corresponding distinct eigenvalues. Then the set {v1, . . . , vk} is L.I.

Proof. Suppose the {v1, . . . , vk} is L.D. Since an eigenvector is non-zero by definition,

{v1} is L.I. Let r be the largest integer such that {v1, . . . , vr} is L.I. Since we are assuming

that {v1, . . . , vk} is L.D, r satisfies 1 ≤ r ≤ k. Moreover, by definition of r, {v1, . . . , vr+1}
is L.D. Thus there are scalars c1, . . . , cr+1, not all zero such that

c1v1 + . . .+ cr+1vr+1 = 0 . (3.3)

But

0 = c1v1 + . . .+ cr+1vr+1

=⇒ A · 0 = 0 = c1Av1 + . . .+ cr+1Avr+1 .

Since Avi = λivi, we have

c1λ1v1 + . . .+ cr+1λr+1vr+1 = 0 . (3.4)

Multiply (3.3) both sides by λr+1 and subtracting the resulting equation from (3.4) yields

c1(λ1 − λr+1)v1 + . . .+ cr(λr − λr+1)vr = 0 .

Since v1, . . . , vr are L.I, we have

c1(λ1 − λr+1) = · · · = cr(λr − λr+1) = 0 .
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Now

c1(λ1 − λr+1) = · · · = cr(λr − λr+1) = 0

=⇒c1 = · · · = cr = 0 since λi 6= λj ∀i 6= j

=⇒cr+1vr+1 = 0 see Equation (3.3)

=⇒cr+1 = 0 .

This contradicts the fact that not all ci’s are zero. Thus the set {v1, . . . , vk} is L.I.

Theorem 3.1.31. Let A be an n × n matrix such that A has n distinct eigenvalues.

Then A is diagonalizable.

Proof. Let v1, . . . , vn be eigenvectors corresponding to λ1, . . . , λn.

λi 6= λj ∀i 6= j

=⇒ v1, . . . , vn are L.I by Theorem 3.1.30

=⇒ A is diagonalizable by Theorem 3.1.26 .

Example 3.1.32. The matrix

A =

0 1 0

0 0 1

4 −17 8


has three distinct eigenvalues (verify) λ = 4 and λ = 2±

√
3. Thus by Theorem 3.1.31,

A is diagonalizable and

P−1AP =

4 0 0

0 2 +
√

3 0

0 0 2−
√

3

 .

Remark 3.1.33. The eigenvalues of a triangular matrix are the entries on its main

diagonal. Thus, a triangular matrix with distinct entries on the main diagonal is diago-

nalizable.

Example 3.1.34. The matrix

A =


−1 2 4 0

0 3 1 7

0 0 5 8

0 0 0 −2


is diagonalizable by the above remark.



3.2. Block Matrices and Their Properties 41

Remark 3.1.35. Theorem 3.1.31 says only that if a matrix has all distinct eigenvalues

(whether real or complex), then it is diagonalizable. In other words, only matrices with

repeated eigenvalues might be non-diagonalizable.

Example 3.1.36. a) The matrix A =

1 0 0

0 1 0

0 0 1

 has repeated eigenvalues λ = 1

with multiplicity 3 but is diagonalizable since any non-zero vector in R3 is an

eigenvector of A (verify). In particular, we can find 3 L.I eigenvectors.

b) The matrix B =

1 1 0

0 1 1

0 0 1

 has repeated eigenvalues λ = 1 with multiplicity 3

but is diagonalizable but solving for its eigenvectors leads to the system

(λI −B) · x = 0

the solution of which is x1 = t, x2 = 0, x3 = 0. Thus every eigenvector of B is a

multiple of 1

0

0


which means that the eigenspace has dimension 1 and that isB is non-diagonalizable.

3.2 Block Matrices and Their Properties

Let A be an n ×m matrix and B be an m × p matrix. Suppose r < m. Then, we can
decompose the matrices A and B as

A =
[
P Q

]
and B =

[
H
K

]
where P order n×r and H has order r×p. That is, the matrices P and Q are submatrices
of A and P consists of the first r columns of A and Q consists of the last m− r columns
of A. Similarly, H and K are submatrices of B and H consists of the first r rows of B
and K consists of the last m− r rows of B.

Theorem 3.2.1. Let A = [aij] =
[
P Q

]
and B = [aij] =

[
H

K

]
be defined as above.

Then

AB = PH +QK .
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Proof. First note that the matrices PH and QK are each of order n × p. The matrix

products PH and QK are valid as the order of the matrices P,H,Q and K are respec-

tively, n × r, r × p, n × (m − r) and (m − r) × p. Let P = [Pij], Q = [Qij], H = [Hij]

and K = [Kij]. Then, for 1 ≤ i ≤ n 1 ≤ j ≤ p, we have

(AB) =
m∑
k=1

aikbkj

=
r∑

k=1

aikbkj +
m∑

k=r+1

aikbkj

=
r∑

k=1

PikHkj +
m∑

k=r+1

QikKkj

= (PH)ij + (QK)ij

= (PH +QK)ij

Remark 3.2.2. Theorem 3.2.1 is very useful due to the following reasons:

• The order of the matrices P,Q,H and K are smaller that that of A or B.

• It may be possible to block the matrix in such a way that a few blocks are either

identify matrices or zero matrices. In this case, it may be easy to handle the matrix

product using the block form.

• When we want to prove results using induction, then we may assume that the

result for r × r submatrices and then look for (r + 1)× (r + 1) submatrices, etc.

Example 3.2.3. If

A =

 0 −1 2

3 1 4

−2 5 −3

 ,
then A can be decomposed as follows:

A =

 0 | −1 2

3 | 1 4

−2 | 5 −3

 , A =

 0 −1 | 2

3 1 | 4

−2 5 | −3



A =

 0 −1 | 2

3 1 | 4

−2 5 | −3

 , A =

 0 | −1 2

3 | 1 4

−2 | 5 −3


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Definition 3.2.4. Let A =

[
P Q

R S

]
be a decomposition of a matrix A. Then the

submatrices P,Q,R and S are called the blocks of the matrix A.

Example 3.2.5. In Example 3.2.3, if

A =

 0 −1 | 2

3 1 | 4

−2 5 | −3

 ,
, then the block matrices P,Q,R and S of A respectively are

P =
[
0 −1

]
, Q =

[
2
]
, R =

[
3 1

−2 5

]
and S =

[
4

−3

]
.

Remark 3.2.6. Let A =

[
P Q

R S

]
and B =

[
E F

G H

]
be matrices with block matrices

P,Q,R, S and E,F,G,H.

1. Even if A + B is defined, the order of P and E may not be same and, hence we

may not be able to add A and B in the block form. But if A+ B and P + E are

defined, then

A =

[
P + E Q+ F

R +G S +H

]
2. If the product AB is defined the product PE need not be defined. Therefore, if

both the products AB and PE are defined, then the product of block matrices is

defined. In this case, we have

AB =

[
PE +QG PF +QH

RE + SG RF + SH

]

Note that once a partition of A is fixed, the partition of B has to be properly chosen
for the purposes of addition or multiplication.

Exercise 3.2.7.

1. Compute the matrix product AB using the block matrix multiplication for the

matrices

A =


1 −2 1 2

−1 3 2 0

7 0 1 4

0 1 4 2

 , B =


1 −1 0 7

0 −2 1 3

1 4 2 1

2 2 0 4


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2. Let A =

[
P Q

R S

]
. If P,Q,R, and S are symmetric, what can you say about A?

Are P,Q,R and S symmetric, when A is symmetric?

3. Let A = [aij] and B = [bij] be two matrices. Suppose a1, a2, . . . , an are the rows

of A and b1, b2, . . . , bm are the columns of B. If the product AB is defined, then

show that

AB =
[
Ab1 Ab2 · · · Abm

]
=


a1B

a2B
...

anB



3.3 Determinants of 2 by 2 Block Matrices

Lemma 3.3.1. If A =

[
E F

G H

]
, then

det(A) = det(EH − FG)

whenever at least one of the blocks E,F,G and H is equal to zero.

3.4 Jordan Canonical Forms

Recall that not every n× n matrix A can be diagonalized. However, we can always put
matrices of type A into something called Jordan canonical form, which means that A
can be written as

A = B−1


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

B
where the Ji are certain block matrices of the form

Ji =
[
λ
]

or

[
λ 1
0 λ

]
or

λ 1 0
0 λ 1
0 0 λ

 etc

with λ an eigenvalue of A.
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How do we determine the Ji blocks?

Fix an eigenvalue λ. To determine the size of the Jordan blocks Ji that are associated
to λ, it turns out that all we need to know are the numbers

null(A− λI), (null(A− λI))2 , etc .

Moreover, we have

• null(A− λI) is the number of Jordan blocks Ji associated to λ.

• The number

sj = (null(A− λI))j − (null(A− λI))j−1

is the number of Jordan blocks associated to λ that are of size at least j × j.

Let Ji be an ni × ni block matrix. Then one can easily check that

A− λI = B−1CkB

where

Ck =


J1 − λIn1 0 · · · 0

0 J2 − λIn2 · · · 0
...

...
. . .

...
0 0 · · · Jk − λInk

 .

It is not hard to see that the jth power of the matrix A− λI is

(A− λI)j = B−1C
′

kB

where

C
′

k =


(J1 − λIn1)

j 0 · · · 0
0 (J2 − λIn2)

j · · · 0
...

...
. . .

...
0 0 · · · (Jk − λInk

)j

 .

Remark 3.4.1.

null(C
′

k) =
k∑
i=1

(null(A− λIni
))j , and

rank(C
′

k) =
k∑
i=1

(rank(A− λIni
))j .
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How do we determine sj?

Until now we know that how many Jordan blocks there are, but we would like to also
determine their various sizes sj. To do this, we need to understand what the various
powers of the blocks Hi look like:

Let

Hi =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Then

H1
i = Hi , H

2
i =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , H3
i =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , H4
i =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Thus Hj
i = 0 for all j ≥ 4. By studying this example, one should be convinced that the

following is true:

null
(
Hj
i

)
=

{
j if ni ≥ j
ni if ni < j

=⇒ null
(
Hj
i

)
− null

(
Hj−1
i

)
=

{
1 if ni ≥ j
0 if ni < j

Note that the only blocks that could possibly contribution to the nullity (when we
sum up the nullities of the (Ji − λIni

)j blocks) are those whose eigenvalues equal to
λ, because otherwise (Ji − λIni

)j is an ni × ni upper triangular matrix whose diagonal
contains non-zero entries, making it invertible which is equivalent to null(Ji−λIni

)j = 0.
We thus only need to focus on blocks corresponding to the same eigenvalue λ. Let

J1, . . . , Jt be the reordered Jordan blocks corresponding to λ. Here, Jt+1, . . . , Jk do not
contribute to the nullity since their nullities are zero. Then, Hi = Ji−λIni

, i = 1, . . . , t,
might look like.

[
0
]

or

[
0 1
0 0

]
or

0 1 0
0 0 1
0 0 0

 or


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 or

null(Hi) = 1 =⇒ rk(Hi) = ni − 1 , i = 1, . . . , t

=⇒
t∑
i=1

null(Hi) = t = null(Ck) = null(A− λI) .

We thus have t Jordan blocks associated to the eigenvalue λ. If we sum this up over all
the blocks Hi, we get a sum of 1’s when ni ≥ j which means that

null
(

(A− λI)j − (A− λI)j−1
)

equals the number of blocks of size at least j × j corresponding to the eigenvalue λ.
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Remark 3.4.2. The number of possible sizes of the Jordan blocks of an n × n matrix

having a single λ is the number of integer partitions of n, denoted by P (n). For example,

P (4) = 5, namely

(1, 3), (1, 1, 1, 1), (1, 2, 1), (2, 2), (4) .

Example 3.4.3. Find the Jordan blocks of the matrix

A =


0 1 0 0

−3 4 0 0

2 −1 2 0

−1 1 1 2

 .

In the first step, we determine its characteristic polynomial. It is easy to see that the

characteristic polynomial of A is:

χA(λ) = (λ− 2)4

and thus λ = 2 is an eigenvalue of A. Since A has a single eigenvalue, the number of

Jordan blocks, by the above remark, is P (4) = 5. These are

C1 =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 , C2 =


2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 , C3 =


2 1 0 0

0 2 1 0

0 0 2 0

0 0 0 2

 , C4 =


2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2


and

C5 =


2 1 0 0

0 2 1 0

0 0 2 1

0 0 0 2

 .

Now in order to reduce the possibilities, we will need to first compute the number of

Jordan blocks by computing nullity of A− 2I, since λ = 2. To do this, by row reducing,

we get

A−2I =


−2 −1 0 0

−3 2 1 0

2 −1 0 0

−1 1 1 0

→

−1 1 1 0

−3 2 1 0

2 −1 0 0

−2 1 1 0

→

−1 1 1 0

0 −1 −2 0

0 1 2 0

0 −1 −2 0

→

−1 1 1 0

0 −1 −2 0

0 0 0 0

0 0 0 0

 .

This implies that null(A− 2I) = 2 and, hence, we have two Jordan blocks. Thus either

we have
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C3 =


2 1 0 0

0 2 1 0

0 0 2 0

0 0 0 2

 or C4 =


2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2

 .

To determine which it is, we must compute null(A− 2I)2. First

(A− 2I)2 =


1 0 1 0

2 0 2 0

−1 0 −1 0

1 0 1 0

 .

Thus null((A − 2I)2) = 3 since rk((A − 2I)2) = 1. That is, only the first column is a

basis for the column space. Moreover, we have

null((A− 2I)2)− null((A− 2I)) = 3− 2 = 1 .

This implies that there is exactly 1 matrix having size at least 2× 2. Since in C4 there

are two 2× 2 block matrices,

A = B−1C3B .

Why C3? Again consider the matrix (A− 2I)3 = 0. Now

null((A− 2I)3) = 4 =⇒ null((A− 2I)3)− null((A− 2I)2) = 4− 3 = 1 .

This implies that there is exactly 1 matrix having size at least 3× 3 which is of course

C3.

3.5 Inner Products

Definition 3.5.1. Let V be a real vector space. An inner product on V is a function

〈 , 〉 : V × V → R

that associates each pair (u, v) of elements in V to a real number 〈u, v〉 such that for all

u, v, w in V and scalar λ, we have:

• symmetric: 〈u, v〉 = 〈v, u〉.

• bilinear (that is linear in both factors):
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- 〈λu, v〉 = λ〈u, v〉 for all scalars λ and

- 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉

• positive: 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

A vector space V together with an inner product 〈, 〉 is called a real inner product space.

Definition 3.5.2. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Rn.

• A Euclidean inner product on Rn is defined as

〈u, v〉 =
n∑
i=1

uivi , and

• A weighted Euclidean inner product on Rn is defined as

〈u, v〉 =
n∑
i=1

wiuivi

where w1, . . . , wn are positive real numbers, which we call weights.

Example 3.5.3. The function 〈, 〉 defined by

〈, 〉 : R2 → R

(u, v) 7→ 3u1v1 + 2u2v2

where u = (u1, u2) and v = (v1, v2) are vectors in R2 defines an inner product on R2.

In fact, this inner product is a weighted inner product on R2. It is easy to see that the

above function satisfies the axioms of inner product space. Let us check it these axioms.

• Symmetric: 〈u, v〉 = 〈v, u〉

〈u, v〉 = 3u1v1 + 2u2v2 = 3v1u1 + 2v2u2 = 〈v, u〉 .

• Bilinear: Let z = (z1, z2) ∈ R2. Then

〈u+ z, v〉 = 〈(u1 + z1, u2 + z2), (v1, v2)〉
= 3(u1 + z1)v1 + 2(u2 + z2)v2

= 3u1v1 + 2u2v2 + 3z1v1 + 2z2v2

= 〈u, v〉+ 〈z, v〉 .

and

〈λu, v〉 = 3λ(u1v1) + 2λ(u2v2)

= λ(3u1v1 + 2u2v2)

= λ〈u, v〉 .
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• positive:

〈v, v〉 = 3v1v1 + 2v2v2

= 3v21 + 2v22 ≥ 0 and

〈v, v〉 = 0⇐⇒ v1 = v2 = 0⇐⇒ v = 0 .

Definition 3.5.4. Let V be an inner product space. The norm (or length) of a vector

u in V is denoted by ‖u‖ and is defined by ‖u‖ =
√
〈u, v〉. The distance between two

points (vectors) u and v is denoted by d(u, v) and is defined by d(u, v) = ‖u− v‖.

Note that if a vector has norm 1, then we say that it is a unit vector.

Example 3.5.5. Let u = (u1, . . . , un) and v = (v1, . . . , vn are vectors in Rn with the

Euclidean inner product , then

‖u‖ =
√
u, u1/2 = (u · u)1/2 =

√
u21 + . . .+ u2n

and

d(u, v) = ‖u− v‖ = (u− v) · (u− v) =
√

(u1 − v1)2 + . . .+ (un − vn)2 .

Remark 3.5.6. Norm and distance depend on the inner product being used. That is, if

the inner product is changed, then the norms and distances between vectors also change.

Example 3.5.7. For the vectors u = e1 and v = e2 in R2 with

a) the Euclidean inner product, we have

‖u‖ =
√

12 + 02 = 1 and d(u, v) =
√

(1− 0)2 + (0− 1)2 =
√

2 .

b) the weighted Euclidean inner product of Example 3.5.3, we obtain

‖u‖ =
√

3(1)2 + 2(0)2 =
√

3 and d(u, v) =
√

3(1− 0)2 + 2(0− 1)2 =
√

5 .

Inner Products Generated by Matrices

The Euclidean inner product (EIP) and weighted Euclidean inner product (WEIP) are
special cases of a general class of inner products on Rn, which we shall now describe:
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Rn and let A be an invertible
n× n matrix. If u · v is the EIP on Rn, then the formula

〈u, v〉 = Au · Av (3.5)

defines an inner product (exercise), it is called the inner product on Rn generated by
A. Since vT · u, (3.5) can be written as

〈u, v〉 = (Av)TAu = vTATAu .
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Example 3.5.8 (Inner Product generated by the identity matrix). The inner

product on Rn generated by the n × n identity matrix is the EIP, since substituting

A = I in (3.5) yields

〈u, v〉 = Iu · Iv = u · v .

The WEIP 3u1v1 + 2u2v2 discussed in Example 3.5.3 is the IP on R2 generated by[√
3 0

0
√

3

]
= A [A is symmetric ]

In fact, it is easy to check that

〈u, v〉 =
[
v1 v2

]
ATA

[
u1

u2

]
= 3u1v1 + 2u2v2

In general, the WEIP 〈u, v〉 =
∑n

i=1wiuivi is the IP on Rn generated by

A =


√
w1 0 . . . 0

0
√
w2 . . . 0

...
...

. . .
...

0 0 . . .
√
wn


Example 3.5.9 (Inner Product on M2×2). If

u =

[
u1 u2

u3 u4

]
and v =

[
v1 v2

v3 v4

]
are any two 2 × 2 matrices, then the following formula defines an IP on M2×2 (easy

exercise):

〈u, v〉 = tr(uTv) = tr(vT )u = u1v1 + u2v2 + u3v3 + u4v4 .

For example, if

u =

[
1 2

3 4

]
and v =

[
−1 0

3 2

]
,

then

〈u, v〉 = 1(−1) + 2(0) + 3(3) + 4(2) = 16 .

• The norm of a matrix u relative to this IP is

‖u‖ = 〈u, u〉1/2 =
√
u21 + u22 + u23 + u24 .

• the unit sphere in this space consists of all matrices u =

[
u1 u2

u3 u4

]
in M2×2 whose

that satisfy the equation ‖u‖ = 1, that is, u21 + u22 + u23 + u24 = 1.
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Example 3.5.10 (An IP on P2 = k[x]2 = {a + bx + cx2 | a, b, c ∈ k). If p = a0 +

a1x+ a2x
2 and q = b0 + b1x+ b2x

2 are any two vectors in P2, then the following formula

defines an IP on P2 (easy exercise)

〈p, q〉 = a0b0 + a1b1 + a2b2 .

• ‖p‖ = 〈p, p〉1/2 =
√
a20 + a21 + a22.

• the unit sphere in this space consists of all polynomials p in P2 whose coefficients

satisfy the equation ‖p‖ = 1, that is, a20 + a21 + a22 = 1.

Example 3.5.11 (An IP on C[a, b], the space of all continuous functions). Let

f and g are two functions in C[a, b] and define

〈f, g〉 =

∫ b

a

f(x)g(x)dx .

This is well defined since the functions in C[a, b] are continuous. Let p = a0 +a1x+a2x
2

and q = b0 + b1x+ b2x
2 are any two vectors in P2, then the following formula defines an

IP on P2 (easy exercise)

〈p, q〉 = a0b0 + a1b1 + a2b2 .

• ‖p‖ = 〈p, p〉1/2 =
√
a20 + a21 + a22.

• the unit sphere in this space consists of all polynomials p in P2 whose coefficients

satisfy the equation ‖p‖ = 1, that is, a20 + a21 + a22 = 1.

Theorem 3.5.12 (Properties of Inner Products). If u, v and w are vectors in a real

IP space, and k is any scalar, then

a) 〈0, v〉 = 〈v, 0〉 = 0.

b) 〈u, v + w〉 = 〈u, v〉+ 〈uwv〉.

c) 〈u, kv〉 = k〈u, v〉.

d) 〈u− v, w〉 = 〈u,w〉 − 〈v, w〉.

e) 〈u, v − w〉 = 〈u, v〉 − 〈u,w〉.
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3.6 Angle and Orthogonality in Inner Product Spaces

Theorem 3.6.1 (Cauchy-Schwarz Inequality). If u and v are vectors in a real inner

product space, then

|〈u, v〉| ≤ ‖u‖‖v‖ .

Proof.

• Case 1: Assume u = 0. Then |u · | = |0 · | = 0 and ‖u‖‖v‖ = 0‖v‖ = 0.

• Case 2: Assume u 6= 0. This implies a = u · u = ‖u‖2 ≥ 0. Let t be any real

number. By the positivity axiom,

0 ≤ 〈tu+ v, tu+ v〉 = 〈u, u〉t2 + 2〈u, v〉t+ 〈v, v〉 = at2 + bt+ c =: f(t)

with a = 〈u, u〉, b = 2〈u, v〉 and c = 〈v, v〉. Note that f(t) ≥ 0 implies that either

f has no a real root or has a repeated root. This is true only if b2 − 4ac ≤ 0, by

the quadratic formula. Now

b2 − 4ac ≤ 0⇒ 4〈u, v〉2 ≤ 4〈u, u〉〈v, v〉 = 4‖u‖2‖v‖2 .

Taking square root on both sides yields

|〈u, v〉| ≤ ‖u‖‖v‖

as desired.

Theorem 3.6.2 (Properties of Length). If u and v are vectors in an inner product

space V , and if k is any scalar, then

i) ‖u‖ ≥ 0

ii) ‖u‖ = 0⇔ u = 0.

iii) ‖ku‖ = |k|‖u‖.

iv) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality).

Theorem 3.6.3 (Properties of Distance). If u and v are vectors in an inner product

space V , and if k is any scalar, then

i) d(u, v) ≥ 0
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ii) d(u, v) = 0⇔ u = 0.

iii) d(u, v) = d(v, u).

iv) d(u, v) ≤ d(u,w) + d(w, v) (triangle inequality).

Proof. By definition,

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 2〈u, v〉+ 〈v, v〉
≤ 〈u, u〉+ 2|〈u, v〉|+ 〈v, v〉
≤ 〈u, u〉+ 2‖u‖‖v‖+ 〈v, v〉
= ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2

Thus we have

‖u‖‖v‖ ≤ ‖u‖+ ‖v‖ .

Angle Between Vectors

Cauchy-Schwarz inequality can be used to define angles in general inner product spaces.
From Theorem 3.6.1, we obtain[

〈u, v〉
‖u‖‖v‖

]2
≤ 1⇒ −1 ≤ 〈u, v〉

‖u‖‖v‖
≤ 1 (3.6)

If θ is an angle between radian measure varies from 0 to π, then cos θ assumes every
value between -1 and 1 inclusive once. From (3.6), there is a unique angle θ such that

cos θ =
〈u, v〉
‖u‖‖v‖

and 0 ≤ θ ≤ π .

Formally, the angle between two vectors u and v is defined as follows:

Definition 3.6.4. Let u and v are vectors in an inner product space V . Then the angle

between two vectors u and v is defined as

cos θ =
〈u, v〉
‖u‖‖v‖

and 0 ≤ θ ≤ π .

Definition 3.6.5. Two vectors u and v in an IP space are called orthogonal if 〈u, v〉 = 0.
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Example 3.6.6. Show that the matrices u =

[
1 0

1 1

]
and v =

[
0 2

0 0

]
are orthogonal.

Since

〈u, v〉 = tr(uTv) =

[
1 1

0 1

]
·

[
0 2

0 0

]
= 0,

they are orthogonal.

Theorem 3.6.7. If u and v are orthogonal vectors in an IP space, then ‖u + v‖2 =

‖u‖2 + ‖v‖2.

Proof. Left as an exercise

Example 3.6.8. Let p = x and q = x2 ∈ P2 = {f ∈ F [x] | deg f ≤ 2}. Find ‖u+ v‖2.

Solution: Verify that p and q are orthogonal. Thus by the above theorem, we have

‖p+ q‖2 = ‖p‖2 + ‖q‖2

=

(√
2√
3

)2

+

(√
2√
5

)2

=
2

3
+

2

5
=

16

15
.

Definition 3.6.9. Let W be a subspace of an IP space V . A vector u in V is said to

be orthogonal to W if it is orthogonal to every vector in W , and the set of all vectors in

V that are orthogonal to W is called the orthogonal complement of W and denoted by

W⊥ (read W perp).

Theorem 3.6.10 (Properties of Orthogonal Complements). If W is a subspace

of a finite-dimensional IP space V , then

a) W⊥ is a subspace of V .

b) The only vector common to W and W⊥ is 0, that is, W ∩W⊥ = {0}.

c)
(
W⊥)⊥ = W .

Proof.

a) W⊥ = {v ∈ V | 〈v, w〉∀w ∈ W}. Let u and v be elements of W⊥. Then

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 = 0 + 0 = 0 and 〈ku, w〉 = k〈u,w〉 = k · 0 = 0 .

This implies that u+ v and ku are in W⊥.
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b) and c) (non-trivial) are left as an exercise.

Theorem 3.6.11. Let A be an m× n matrix. Then

a) The null space of A and the row space of A are orthogonal complements in Rn with

respect to the EIP.

b) The null space of AT and the column space of A are orthogonal complements i nRm

with respect to the EIP.

c) Moreover, if m = n, the following statements are equivalent:

i) A is invertible

ii) The orthogonal complement of the null space of A is Rn.

iii) The orthogonal complement of the row space of A is {0}.

3.7 Orthonormal Bases

Definition 3.7.1. A set of vectors in an IP space is called an orthogonal set if all pairs

of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has

norm 1 is called orthonormal.

Example 3.7.2. The standard vectors e1, e2, e3 in R3 are orthonormal. That is, the set

S = {e1, e2, e3} is orthogonal (since ei · ej = 0 for all i 6= j) and also orthonormal since

‖ei‖ = 1 for i = 1, 2, 3.

Note that for any non-zero vector v in an IP space, the vector v
‖v‖ has norm 1. More-

over, if S = {v1, . . . , vn} is orthogonal set, then the set S ′ = {u1, . . . , un} with ui = vi
‖vi‖

is orthonormal.

How do we construct an Orthonormal set?

Given orthogonal vectors v1, . . . , vn in an IP space, we construct an orthonormal set as
follows: First we normalize the vectors v1, . . . , vn to obtain the vectors

u1 =
v1
‖v1‖

, . . . , un =
vn
‖vn‖

.

Then the set S = {u1, . . . , un} is an orthonormal set since each pair of these vectors
satisfies the conditions in the above definition.
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Example 3.7.3. Consider the vectors v1 = e2, v2 = (1, 0, 1) and v3 = (1, 0,−1) in R3.

Assume that R3 has the EIP. Since 〈vi, vj〉 = 0 for all i 6= j (1,2,3) the vectors v1, v2, v3

are orthogonal. Are they orthonormal? No since ‖v2‖ =
√

2 6= 1. In order to construct

an orthonormal set with respect to the above vectors we consider first the unit vector

u1 =
v1
‖v1‖

, u2 =
v2
‖v2‖

and u3 =
v3
‖v3‖

⇒ u1 = e2, u2 =

(
1√
2
, 0,

1√
2

)
and u3 =

(
1√
2
, 0,− 1√

2

)
.

Thus the set {u1, u2, u3} is orthonormal.

Definition 3.7.4. In an IP space, a basis consisting of orthonormal vectors is called an

orthonormal basis, and a basis consisting of orthogonal vectors is called an orthogonal

basis.

Coordinates Relative to Orthonormal Bases

Theorem 3.7.5. If S = {v1, . . . , vn} is an orthonormal basis for an IP space V , and u

is any vector in V , then

u = 〈u, v1〉v1 + 〈u, v2〉v2 + . . .+ 〈u, vn〉vn .

Proof. Since S = {v1, . . . , vn} is a basis, a vector u can be expressed in the form u =

k1v1 + . . .+ knvn. We want to show that ki = 〈u, vi〉 for all i = 1, . . . , n. For each vector

vi in S, we have

〈u, vi〉 = 〈k1v1 + . . .+ knvn, vi〉
= k1〈v1, vi〉+ . . .+ ki−1〈vi−1, vi〉+ ki〈vi, vi〉+ ki+1〈vi+1, vi〉+ . . .+ 〈vn, vi〉
= ki since 〈vi, vj〉 = 0 for i 6= j and 〈vi, vj〉 = 1 for i = j .

Definition 3.7.6. Let S = {v1, . . . , vn} be an orthonormal basis for an IP space V . The

coordinates of a vector u relative to the orthonormal basis S are 〈u, v1〉, . . . , 〈u, vn〉 and

the vector (〈u, v1〉, . . . , 〈u, vn〉) is called the coordinate vector of u relative to the basis

S and is denoted by (u)S.

Example 3.7.7. Consider the vectors

v1 = e2 , v2 =

(
−4

5
, 0,

3

5

)
and v3 =

(
3

5
, 0,

4

5

)
.
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With EIP, the set S = {v1, v2, v3} is an orthonormal basis (check!). Express the vector

u = (1, 1, 1) as a L.C of the vectors in S, and find the coordinate vector (u)S.

Solution: Since 〈u, v1〉 = 1, 〈u, v2〉 = −1
5

and 〈u, v3〉 = 7
5
, we have, by Theorem 3.7.5,

u = v1 − 1
5
v2 + 7

5
v3. The coordinate vector of u relative to S is (u)S =

(
1,−1

5
, 7
5

)
.

Theorem 3.7.8. If S is an orthogonal basis for an n-dimensional IP space and if (u)S =

(u1, . . . , un) and (v)S = (v1, . . . , vn), then

a) ‖u‖ =
√
u21 + . . .+ u2n = ‖(u)S‖.

b) d(u, v) =
√

(u1 − v1)2 + . . .+ (un − vn)2.

c) 〈u, v〉 = u1v1 + . . .+ unvn = 〈(u)S, (v)S〉.

Proof.

a)

‖u‖ = ‖
∑
s∈S

〈u, s〉‖

=

〈∑
s∈S

〈u, s〉,
∑
s∈S

〈u, s〉

〉 1
2

=

(∑
s∈S

〈u, s〉2〈s, s〉+
∑

s∈S,t6=s

〈u, t〉2〈s, t〉

) 1
2

=

(∑
s∈S

〈u, s〉2〈s, s〉

) 1
2

since 〈s, t〉 = 0 for t 6= s

=

(∑
s∈S

〈u, s〉2
) 1

2

since 〈s, s〉 = 1

= ‖(u)S‖

b) and c) are exercise.

Example 3.7.9. In Example 3.7.7, ‖u‖ = 3 = ‖(u)S‖.

Coordinates Relative to Orthogonal Bases

If S = {v1, . . . , vn} is an orthogonal basis for a vector space V , then normalizing each of
these vectors yields the orthonormal basis

S ′ =

{
v1
‖v1‖

,
v2
‖v2‖

. . . ,
vn
‖vn‖

}
.
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If u is any vector in V , then by Theorem 3.7.5

u =

〈
u,

v1
‖v1‖

〉
v1
‖v1‖

+ . . .+

〈
u,

vn
‖vn‖

〉
vn
‖vn‖

=

〈
u,

v1
‖v1‖2

〉
v1 + . . .+

〈
u,

vn
‖vn‖2

〉
vn

which implies that the coordinates of u relative to S are〈
u,

v1
‖v1‖2

〉
, . . . ,

〈
u,

vn
‖vn‖2

〉
.

Theorem 3.7.10. If S = {v1, . . . , vn} is an orthogonal set of non-zero vectors in an IP

space, then S is L.I.

Proof. Suppose k1v1 + . . .+ knvn = 0. We want to show that each ki is zero.

0 = 〈0, vi〉
= 〈k1v1 + . . .+ knvn, vi〉
= k1〈v1, vi〉+ . . .+ ki−1〈vi−1, vi〉+ ki〈vi, vi〉+ ki+1〈vi+1, vi〉+ . . .+ 〈vn, vi〉
= ki since 〈vi, vj〉 = 0 for i 6= j and 〈vi, vj〉 = 1 for i = j .

3.8 Orthogonal Projections

Theorem 3.8.1 (Projection Theorem). If W is a finite-dimensional subspace of an IP

space V , then every vector u in V can be expressed in exactly one way as

u = w1 + w2, w1 ∈ W,w2 ∈ W⊥ . (3.7)

Definition 3.8.2. The vector w1 is called the orthogonal projection of u on W and is

denoted by Prou
W. The vector w2 is called the component of u orthogonal to W and is

denoted by Prou
W⊥ . In this case, (3.7) can be expressed as

u = Prou
W + Prou

W⊥ .

Since w2 = u− w1, it follows that

Prou
W⊥ = u− Prou

W ⇒ u = Prou
W + (u− Prou

W) .

Theorem 3.8.3. Let W be a finite-dimensional subspace of an IP space V .
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a) If {v1, . . . , vr} is an orthonormal basis for W , and u is any vector in V , then

Prou
W = 〈u, v1〉v1 + . . .+ 〈u, vr〉vr

b) If {v1, . . . , vr} is an orthogonal basis for W , and u is any vector in V ,

Prou
W =

〈u, v1〉
‖v1‖2

v1 + . . .+
〈u, vr〉
‖vr‖2

vr .

Example 3.8.4. Consider the subspace W = 〈v1, v2〉 of R3 where v1 = e2 and v2 =(
−4

5
, 0, 3

5

)
and u = (1, 1, 1) ∈ R3. Find, in a EIP,

a) Prou
W b) Prou

W⊥

Solution: Note that the vectors v1 and v2 are orthonormal (check!). Thus by Theo-
rem 3.8.3,

Prou
W = 〈u, v1〉v1 + 〈u, v2〉v2 =

(
4

25
, 1,− 3

25

)
and

Prou
W⊥ = u− Prou

W =

(
21

25
, 0,

28

25

)

3.9 Gram-Schmidt Orthogonalization Process

Theorem 3.9.1. Every non-zero finite-dimensional IP space has an orthonormal basis.

Proof. Let V be any non-zero finite-dimensional IP space and suppose that {u1, . . . , un}
is any basis for V . It suffices to show that V has an orthogonal basis, since the vectors

in the orthogonal basis can be normalized to produce an orthonormal basis for V . To

see this, we follow the following steps:

step 1: Let v1 = u1

step 2: W1 = 〈v1〉 and

v2 = Prou2
W⊥1

= u2 − Prou2
W1

= u2 −
〈u2, v1〉
‖v1‖2

v1 .

The set containing only v1 is L.I.

step 3: W2 = 〈v1, v2〉 and

v3 = Prou3
W⊥2

= u3 −
〈u3, v1〉
‖v1‖2

v1 −
〈u3, v2〉
‖v2‖2

v2 .

Clearly, W2 is not in W1 since v2 is not in W1. Thus the set containing only v1 and v2

is L.I. Continuing in this way we have
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step n− 2: Wn−1 = 〈v1, v2, . . . , vn−1〉 and

vn = Proun
W⊥n−1

= un −
n−1∑
j=1

〈un, vj〉
‖vj‖2

vj .

Now set Wn := 〈v1, v2, . . . , vn〉. Clearly, Wn is not in Wn−1 thus by the independence of

{v1, v2, . . . , vn}, vn is orthogonal to {v1, v2, . . . , vn−1}. The set {v1, v2, . . . , vn} is orthog-

onal set and then we normalize it to obtain an orthonormal set.

Definition 3.9.2. The preceding step-by-step construction for converting an arbitrary

basis into an orthonormal basis is called the Gram-Schmidt process.

Example 3.9.3. Consider the vectors u1 = (1, 1, 1), u2 = (0, 1, 1) and u3 = e3 in a EIP

space R3. Using Gram-Schmidt process convert the above vectors into an orthogonal

and orthonormal basis.

We start with v1 = u1 and W1 = 〈v1〉. Then

v2 = u2 −
〈u2, v1〉
‖v1‖2

v1 =

(
−2

3
,
1

3
,
1

3

)
.

Since v2 6= 0, then v2 ⊥ v1 and {v1, v2} is L.I. Now we set W2 = 〈v1, v2〉. Then

v3 = u3 −
〈u3, v1〉
‖v1‖2

v1 −
〈u3, v2〉
‖v2‖2

v2 =

(
0,−1

2
,
1

2

)
.

Therefore, the set {v1, v2, v3} is an orthogonal basis for R3. Since ‖v1‖ =
√

3, ‖v2‖ =
√
6
3

and ‖v3‖ = 1√
2
, an orthonormal basis for R3 is{(

1√
3
,

1√
3
,

1√
3

)
,

(
− 2√

6
,

1√
6
,

1√
6

)
,

(
0,− 1√

2
,

1√
2

)}
.

3.10 Orthogonal Matrices

Definition 3.10.1. A square matrix A with the property A−1 = AT is said to be an

orthogonal matrix

By the above definition, a square matrix A is orthogonal if and only if AAT = ATA = I
where I is an identity matrix.

Example 3.10.2. The matrices

A =
1

7

 3 2 6

−6 3 2

2 6 −3

 and B =

[
cos θ − sin θ

sin θ cos θ

]

are orthogonal (verify!).
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Theorem 3.10.3. The following are equivalent for an n× n matrix A:

a) A is orthogonal

b) The row vectors of A form an orthonormal set in Rn with the EIP.

c) The column vectors of A form an orthonormal set in Rn with the EIP.

Example 3.10.4. Consider the matrix A given in Example 3.10.2. Since the row or

column vectors of this matrix form an orthonormal set (verify) in R3, A is an orthogonal

matrix by the above theorem.

Theorem 3.10.5.

a) The inverse of an orthogonal matrix is orthogonal.

b) A product of orthogonal matrices is orthogonal.

c) If A is orthogonal, then det(A) = 1 or det(A) = −1

3.11 Complex Inner Product Spaces

Definition 3.11.1. An inner product on a complex vector space V is a function that

associate a complex number 〈u, v〉 with each pair of vectors u and v in V in such a way

that the following axioms are satisfied for all vectors u, v, and w in V and for all scalars

k:

a) 〈u, v〉 = 〈v, u〉

b) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉.

c) 〈ku, v〉 = k〈u, v〉

d) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

A complex vector space with an IP is called a complex IP space.

Remark 3.11.2. The following additional properties follow immediately from the four

IP axioms:

i) 〈0, v〉 = 〈v, 0〉 = 0

ii) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉.



3.11. Complex Inner Product Spaces 63

iii) 〈u, kv〉 = k〈u, v〉.

Proof.

〈u, kv〉 = 〈ku, v〉 a)

= k〈v, u〉 c)

= k〈v, u〉 ( properties of conjugate)

= k〈u, v〉 a)

Exercise 3.11.3. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Cn. Show that

the EIP 〈u, v〉 = u1v1 + . . .+ unvn satisfies all the IP axioms.

Definition 3.11.4. Let V be a complex IP space. The norm (or length) of a vector u

in V is defined as

‖u‖ = 〈u, u〉
1
2 =

√
|u1|2 + . . .+ |un|2

and the distance between two vectors u and v is defined by

d(u, v) = ‖u− v‖ =
√
|u1 − v1|2 + . . .+ |un − vn|2

Remark 3.11.5. The definitions of terms like orthogonal vectors, orthogonal set, or-

thonormal set, and orthonormal basis carry over to complex IP spaces without change.

Moreover, Theorems 3.6.1, 3.7.5, 3.7.10, 3.8.1, 3.8.3, 3.9.1 remain valid in complex IP

spaces, and the Gram-Schmidt process can be used to convert an arbitrary basis for a

complex IP space into an orthonormal basis.

Example 3.11.6. Show that the vectors u = (i, 1) and v = (1, i) in C2 are orthogonal

w.r.t. EIP.

Solution: Since

〈u, v〉 = u1v1 + u2v2 = i · 1 + 1 · i = 0 ,

they are orthogonal.

Example 3.11.7. Consider the vector space C3 with the EIP. Apply the Gram-Schmidt

process to transform the basis vectors u1 = (i, i, i), u2 = (0, i, i) and u3 = (0, 0, i) into

an orthonormal basis.

Solution:
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step 1: v1 = u1 and set W1 = 〈v1〉.

step 2: v2 = u2 − Proju2W1
= u2 − 〈u2,v1〉‖v1‖2 v1 =

(
−2

3
i, 1

3
i, 1

3
i
)
.

step 3: Set W2 := 〈v1, v2〉 and

v3 = Proju3W2
= u3 −

〈u3, v1〉
‖v1‖2

v1 −
〈u3, v2〉
‖v2‖2

v2 =

(
0,−1

2
i,

1

2
i

)
.

Thus the vectors v1, v2 and v3 form an orthogonal basis for C3. The norm of these vectors
are ‖v1‖ =

√
3, ‖v2‖ =

√
6
3

and ‖v3‖ = 1√
2
. So an orthonormanl basis for C3 is{(

i√
3
,
i√
3
,
i√
3

)
,

(
− 2i√

3
,
i√
6
,
i√
6

)
,

(
0,− i√

2
,
i√
2

)}
.

3.12 Unitary Matrices

Definition 3.12.1. Let A be a matrix with complex entries. Then the conjugate trans-

pose of A, denoted by A∗, is defined by A∗ = A
T

where A is the matrix whose entries

are the complex conjugates of the corresponding entries in A and A
T

is the transpose of

A. The conjugate transpose is also called the Hermitian matrix.

Example 3.12.2.

A =

[
1 + i −i 0

2 3− 2i i

]
⇒ A =

[
1− i i 0

2 3 + 2i −i

]
⇒ A

T
=

1− i 2

i 3− 2i

0 −i

 .

Properties of the conjugate Transpose

Theorem 3.12.3. If A and B are matrices with complex entries and k is any complex

number, then

a) (A∗)∗ = A;

b) (A+B)∗ = A∗ +B∗;

c) (kA)∗ = kA∗.

Recall that if u and v are column vectors in Rn, then the EIP on Rn can be expressed
as u · v = uT · v. However, if u and v are column vectors in Cn, then the EIP on Cn can
be expressed as u · v = u∗v.

Definition 3.12.4. A square matrix A with complex entries is unitary if A−1 = A∗.
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Theorem 3.12.5. If A is an n× n matrix with complex entries, then the following are

equivalent:

a) A is unitary.

b) The row (resp. column) vectors of A form an orthonormal set in Cn with the EIP.

Example 3.12.6. Show that the matrix

A =

[
1+i
2

1+i
2

1−i
2

−1+i
2

]
.

is unitary w.r.t. the EIP on C2.

Solution: Verify that the row vectors have norm 1 w.r.t. the EIP. Moreover, these

vectors are orthogonal and they form an orthonormal set in C2. Thus A is unitary by

the equivalent conditions given in the above theorem and, hence, we have

A−1 = A∗ = A
T

=

[
1−i
2

1+i
2

1−i
2

−1−i
2

]

since this can easily be verfied by showing that AA∗ = I.

Definition 3.12.7. A square matrix A with complex entries is called uniratarly diago-

nalizable if there is a unitary matrix P such that P−1AP (P ∗AP ) is a diagonal matrix.

Definition 3.12.8. A square matrix A with complex entries is called Hermitian if

A = A∗.

Example 3.12.9. Is the matrix A =

 1 i 1 + i

−i −5 2− i
1− i 2 + i 3

 Hermitian?

Solution: Since

A =

 1 −i 1− i
i −5 2 + i

1 + i 2− i 3

⇒ A∗ = A
T

=

 1 i 1 + i
−i −5 2− i

1− i 2 + i 3

 = A,

it is Hermitian.
One can easily recognize Hermitian matrices by inspection. Consider the following

remark:

Remark 3.12.10. A matrix A is Hermitian if

• the entries on the main diagonal are real numbers.
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• the mirror image of each entry across the main diagonal is its complex conjugate.

Definition 3.12.11.

a) A square matrix A is orthogonal w.r.t. EIP if A−1 = AT .

b) A square matrix A is symmetric if A = AT .

Definition 3.12.12. An n × n matrix A is said to be orthogonally diagonalizable if

there exists an orhtogonal matrix P such that the matrix P−1AP = P TAP is a diagonal

matrix. In this case, P is said to orthogonally diagonalizes A.

Theorem 3.12.13. Let A be an n×n matrix. The following statements are equivalent:

a) A is orthogonally diagonalizable.

b) A has an orhtonormal set of n eigenvectors.

c) A is symmetric.

Theorem 3.12.14. Let A be a symmetric matrix. Then

i) The eigenvalues of A are all real numbers.

ii) Eigenvectors from different eigenspaces are orthogonal.

Steps to Diagonalize Symmetric Matrices

Thus to diagonalize symmetric matrices we follow the following steps:

step 1: Find a basis for each eigenspace of A.

step 2: Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal
basis for each eigenspace.

step 3: Form the matrix P whose columns are the basis vectors constructed in step 2.
This matrix orthogonally diagonalizes A.

Remark 3.12.15. Theorem 3.12.14 ensures that eigenvectors from different eigenspaces

are orthogonal, whereas the application of the Gram-Schmidt process ensures that the

eigenvectors within the same eigenspace are orthonormal. Therefore, the entire set of

eigenvectors obtained by this procedure is orthonotrmal.
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Example 3.12.16. Find an orhtogonal matrix P that diagonalizes

A =

4 2 2

2 24 2

2 2 4

 .

Solution: χA(λ) = (λ−2)2(λ−8) = 0 ⇒ λ1 = 2 and λ2 = 8 are eigenvalues. The

vectors u1 =

−1
1
0

 and u2 =

−1
0
1

 form a basis for the eigenspace corresponding to

λ1 = 2. Applying the gram-Schmidt process to {u1, u2} yields the following orthonormal
eigenvectors (verify!):

v1 =

− 1√
2

1√
2

0

 and v2 =

−
1√
6

− 1√
6

2√
6


The eigenspace corresponding to λ2 = 8 has u3 =

1
1
1

 as a basis. Apply Gram-schmidt

process to {u3} to obtain

v3 =


1√
3
1√
3
1√
3

 .

Finally, using u1, u2 and u3 as column vectors, we obtain

P =
[
v1 v2 v3

]
.

which orthogonally diagonalizes A.

3.13 Normal Matrices

Definition 3.13.1. A square matrix A with complex entries ic called normal if AA∗ =

A ∗ A.

Example 3.13.2.

a) Every Hermitian matrix is normal since AA∗ = AA = A∗A.

b) Every unitary matrix AA∗ = I = A∗A.

Theorem 3.13.3. Let A be n× n a square matrix with complex entries. The following

statements are equivalent:
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i) A is unitarly diagonalizable.

ii) A has an orthonormal set of n eigenvectors.

iii) A is normal.

Theorem 3.13.4. If A is a normal matrix, then eigenvectors from different eigenspaces

of A are orthogonal.

Theorem 3.13.4 is the key to construct a matrix that unitarly diagonalizes a normal
matrix.

Steps to Diagonalize Normal Matrices

Recall that a symmetric matrix is orthogonally diagonalized by any orthogonal matrix
whose column vectors are eigenvectors of A. Similarly, a normal matrix A is diagonalized
by any unitary matrix whose column vectors are eigenvectors of A. Thus to diagonalize
normal matrices we follow the following steps:

step 1: Find a basis for each eigenspace of A.

step 2: Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal
basis for each eigenspace.

step 3: Form the matrix P whose columns are the basis vectors constructed in step 2.
This matrix unitarly diagonalizes A.

Remark 3.13.5. Theorem 3.13.4 ensures that eigenvectors from different eigenspaces

are orthogonal, and the application of the Gram-Schmidt process ensures that the eigen-

vectors within the same eigenspace are orthonormal. Thus the entire set of eigenvectors

obtained by this procedure is orthonormal and, hence, is a basis by Theorem 3.13.3.

Example 3.13.6. Show that the matrix A =

[
2 1 + i

1− i 3

]
is unitarly diagonalizable.

Find a matrix P that unitarily diagonalizes A.

Solution: Since the matrix A is Hermitian, it is normal see Example 3.13.2 a). Thus
A is unitarily diagonalizable by Theorem 3.13.3. To find the matrix P , first we find
eigenvalues of A. It is easy to see that λ1 = 1 and λ2 = 4 are eigenvalues of A. By
definition, x = (x1, x2)

T is an eiegenvector of A corresponding to λ if and only if x is a
non-trivial solution of [

λ−2 −1− i
−+ i λ−3

] [
x1
x2

]
=

[
0
0

]
.

If λ1 = 1, we have
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[
−1 −1− i
−1 + i −2

] [
x1
x2

]
=

[
0
0

]
and [

−1 −1− i
−1 + i −2

]
→
[

1 1 + i
−1 + i −2

]
→
[
1 1 + i
0 0

]
.

This implies that [
1 1 + i
0 0

] [
x1
x2

]
=

[
0
0

]
⇒ x2 is free variable .

Let x2 = s. Then x1 + x2(1 + i) = 0⇒ x1 = −(1 + i)s. Thus we have[
x1
x2

]
= s

[
−1− i

1

]
⇒ u1 =

(
−1− i

1

)
is an eigenvector corresponding to λ1 = 1. Gram-schmidt process involves only one

step. After normalizing this vector, we obtain an orthonormal basis p1 =

(
−1−i√

3
1√
3

)
for the eigenspace corresponding to λ1 = 1. Similarily, u2 =

(
1+i
2

1

)
is an eigenvector

corresponding to λ2 = 4. Moreover,

v2 =

(
1+i√

6
2√
6

)

is an orthormal basis obtained by applying Gram-Schmidt process for the eigenspace
corresponding to λ2 = 4. Thus P =

[
v1 v2

]
diagonalizes A and

P−1AP =

[
1 0
0 4

]
.





Chapter 4

Quadratic Forms

4.1 Quadratic Forms

Consider the linear equation a1x1 + . . . + anxn = b. The expression on the left side of
this equation,

a1x1 + . . .+ anxn

is a function of n variables, called a linear form. In a linear form, all variables occur to
the first power, and there are no products of variables in the expression.

Definition 4.1.1. Functions of the form

a1x
2
1 + . . .+ anx

2
n + ( all possible terms of the formakxixj for i < j)

is called quadratic forms.

Example 4.1.2. The most general quadratic form in the variables

a) x1 and x2 is

a1x
2
1 + a2x

2
2 + a3x1x2 (4.1)

b) x1, x2 and x3 is

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x1x2 + a5x1x3 + a6x2x3 (4.2)

Note that the terms in a quadratic form that involve products of different variables
are called the cross-product terms. In the above example,

a) the cross-product term is a3x1x3;

b) the cross-product terms are a4x1x2 + a5x1x3 + a6x2x3.

71
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The quadratic form in (4.1) and (4.2) can be written in matrix form,respectively, as:

[
x1 x2

] a1 a3
2

a3
2

a2

x1
x2

 and
[
x1 x2 x3

]

a1

a4
2

a5
2

a4
2

a2
a6
2

a5
2

a6
2

a3



x1

x2

x3

 .

The above matrix forms are of the form xTAx, where x is the column vector of variables,
and A is a symmetric matrix

• whose diagonal entries are the coefficients of the squared terms.

• whose entries off the main diagonal are half the coefficients of the cross-product.

More precisely,

a) the diagonal entry in row i and column i is the coefficients of x2i .

b) the off diagonal entry in row i and column j is half the coefficient of the product
xjxi.
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