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Advanced Linear Algebra Worksheet |

1. Let V be a vector space and W C V be a subspace. Define a relation ~y, on V as
follows:
vy ~w vg if and only if v; — vy € W.

Show that ~y is an equivalence relation on V. We write the equivalence classes

as
[/U]_]:{'UQEV"U:[_’UQGW}:/U]__'_W

Set V/W = {v+ W | v € V}. Addition and scalar multiplication on V/W are
defined as follows. Let v,v9 € V and ¢ € F'. Define

(v + W)+ (vg + W) = (v1 +v9) + W;
c(vy + W) =cv, + W.

Show that V/W is an F-vector space.

2. Let V be an F -vector space of dimension n. Let 7 € £(V) such that 72 = 0.
Prove that the image of 7 is contained in the kernel of 7 and hence the dimension
of the image of 7 is at most 7.






Chapter 1

Vector Spaces

1.1 Vector Spaces

Definition 1.1.1. Let F be a field. A vector space over F' is a nonempty set V' together

with two operations:
o addition: assigns to each pair (u,v) € V x V a vector u+v € V.
o scalar multiplication: assigns to each pair (r,u) € F' x V a vector ru in V.
Furthermore, the following properties must be satisfied:
o Associativity of addition: For all vectors u,v,w € V, u+ (v+w) = (u+v) + w.
o Commutativity of addition: For all vectors u,v € V, u+v =v + u.

o [Lxistence of zero: There is a zero vector 0 € V with the property that 0 + u =

u+ 0 =wu for all vectors u € V.

e Fuistence of additive inverses: For each vector u € V, there is a vector in V,
denoted by —u, with the property that u 4+ (—u) = (—u) +u = 0.

e Properties of scalar multiplication: For all scalars a,b € F and for all vectors
u,v eV,

a(u+v) =au+av
(a+bu=au+bu
(ab)u = a(bu)

lu=u

In the above definition
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O

Elements of F' (resp. V') are referred to as scalars (resp. vectors).

O

The first four properties are equivalent to (V,+) is an abelian group.
o V is sometimes called an F-space.

o If F =R (resp. C), then V is a real (resp. complex) vector space.

1.2 Examples of a vector space

1) Let F be a field. The set Vr of all functions from F to F is a vector space over F,
under the operations of ordinary addition and scalar multiplication of functions:

(f +9)(x) = f(x) +g(x), and (af)(z) = a(f(2))-

2) The set M,,xn(F) of all m x n matrices with entries in a field F' is a vector space
over F', under the operations of matrix addition and scalar multiplication.

1.3 Subspaces, Linear combinations and Generators
Most algebraic structures contain substructures.

Definition 1.3.1. A subspace of a vector space V is a subset S of V that is a vector
space in its own right under the operations obtained by restricting the operations of V'
to S. To indicate that S is a subspace of V, we use the notation S < V. If S is a
subspace of V but S # V| we say that S is a proper subspace of V' and it is denoted by
S < V. The zero subspace of V is {0}.

Definition 1.3.2. Let S be a nonempty subset of a vector space V. A linear combination

(L.C) of vectors in S is an expression of the form
aivy + ...+ a,v,

where v1...v, € S and ay,...,a, € F. The scalars a; are called the coefficients of the
linear combination. A L.C is trivial if every coefficient a; is zero. Otherwise, it is non

trivial.

Theorem 1.3.3. A non-empty subset S of a vector space V is a subspace of V if and
only if S s closed under addition and scalar multiplication or equivalently, S is closed

under linear combinations, that is,

a,be Fu,ve S = au+bv e S.
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Example 1.3.4. Consider the vector space V'(n,2) of all binary n-tuples, that is, n-
tuples of 0’s and 1’s. The weight W(v) of a vector v € V(n, 2) is the number of non-zero
coordinates in v. Let E,, be the set of all vectors in V' of even weight. Then E,, < V(n, 2).

Proof. For vectors u,v € V(n,2), show that

W(u+v) =W(u) + W) —2W(uno) (1.1)

b component is the product of the ith

where u N v is the vector in V(n,2) whose *
components of u and v, that is, (uNv); = u; - v;. Let u and v be elements of E,. Then
by definition W(u) and W(v) are even which by (1.1) implies W(u + v) is even, that is,
u+v € E,. Let a € Fy and let u € E,,. Clearly, W(au) is even which implies au € F,,.

Thus E, < V(n,2), known as the even weight subspace of V'(n, 2). O

Definition 1.3.5. The subspace spanned (or generated) by a nonempty set S of vectors

in V is the set of all linear combinations of vectors from S:

(S) = Span(S) = {Zm}i ri € Fu; € S} .
i=1
When S = {vy,...,v,} is a finite set, we use the notation (vy, ..., v,) or span(vy, ..., v,).

A set S of vectors in V' is said to be span V', or generates V', if V' = Span(5).

Any superset of a spanning set is also a spanning set and all vector spaces have
spanning set since V' spans itself.

1.4 Linear Dependence and Independence of Vectors

Definition 1.4.1. Let V be a vector space. A nonempty set .S of vectors in V' is linearly

independent (L.I) if for any distinct vectors sq,...,s, in S
a181 + ...+ aps, = 0= q; =0 for all 7.

In other words, S is L.I if the only L.C of vectors from S that is equal to 0 is the trivial
L.C, all of whose coefficients are 0. If S is not L.I, it is said to be linearly dependent
(LD).

A L.I set of vectors cannot contain the zero vector, since 1- 0 = 0 violates the condition
of linear independence.
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Definition 1.4.2. Let S be a nonempty set of vectors in V. To say that a nonzero vector
v € V is an essentially unique L.C of the vectors in S is to say that, up to the order of
terms, there is one and only one way to express v as a L.C v = )" | a;s; where the
s;’s are distinct vectors in S and the coefficients a; are nonzero. More explicitly, v # 0

is an essentially unique L.C of vectors in S if v € (S) and if whenever
V=a181+ ... +a,s, and v = bty + ...+ bt

where the s;’s are distinct and ¢;’s are distinct and all coefficients are nonzero, then
m = n and after a reindexing of the b;t;’s if necessary, we have a; = b; and s; = t; for all

1=1,...,n.

Theorem 1.4.3. Let S # {0} be a nonempty set of vectors in V. The following are

equivalent:
(a) S is L.I
(b) Every nonzero vector v € span(S) is an essentially unique L.C of the vectors in S.
(¢) No vector in S is a L.C of other vectors in S.
Proof. (a) = (b) Suppose that
O0#£v=a181+...+a,8, and v = bit; + ...+ byt

where the s;’s are distinct and ¢;’s are distinct and the coefficients are nonzero. By

subtracting and grouping s’s and t’s that are equal, we can write

0 = (%‘1 - bh)sil + ...+ (aik — bll) Sik

+ Qifp1 g4 T+t a4, S, — bik+1tik+1 - - bimtim

(a) > m=n==Fkanda;, =0, and s;, =¢;, forallu=1,... k.

(b) = (c) and (c) = (a) is left as an exercise. O

1.5 Direct sum and direct product of subspaces

Definition 1.5.1. Let V;,....V,, be vector spaces over a field F. The external direct
sum of Vi,...,V,, denoted by Vi H ... BV, is the vector space V whose elements are
ordered n-tuples:

V=A{(v1,...,v) |vieVyyi=1,...,n}
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with componentwise operations

(Ugy .oy tp) + (V1,00 0,) = (ug + 01, ... Uy +v,) and

r(uy, ... uy) = (rug,...,ru,) forallr € F.

Example 1.5.2. The vector space I is the external direct sum of n copies of F', that
is, F" = FFH ... F where there are n summands on the right hand side.

The above construction can be generalized to any collection of vector spaces by gen-
eralizing the idea that an ordered n-tuple (vy,...,v,) is just a function

f:{l,...,n}—)UV},
i— f(i).

Definition 1.5.3. Let F = {V; | i € I} be any family of vector spaces over F'. The

direct product of F is the vector space

Hv;:{f LIV

il

iy i}

thought of as a subspace of the vector space of all functions from I to |JV;.

Note that

H%:{U:(Ui)iel | Uievi}z{f : I—>U\/; f(z')evi}_

el

If we define addition and scalar multiplication by

v—l—w=<f 3 I_>UVZ’)+<Q : I—>UV%>
= (f+g: 1>Jvi) and
av:a<f : I—>UV2)
:(af : I—>UV¢)

or by

(vi)ier + (w;i)ier = (v; + w;)ier and

a(vi)ier = (av;)ier

Then the direct product []..; Vi is a vector space over F.

el
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Definition 1.5.4. Let F = {V; | i € I} be any family of vector spaces over F. The
support of a function f : I — (JV; is the set

support(f) = {i € I [ f(i) # 0}.
We say that f has finite support if f(i) = 0 for all but a finite number of 7 € I.

Definition 1.5.5. Let F = {V; | i € I} be any family of vector spaces over F. The

external direct sum of the family F is the vector space

ext

@Vi:{f : [%UVi‘f(z’)evi,f hasﬁnitesupport}.

iel
thought of as a subspace of the vector space of all functions from I to |JV;.
fV,=Vforalliel,
e we denote the set of all functions from I to V by VZ, and
e we denote the set of all functions in V! that have finite support by (VI )0.

In this case, we have
ext

[[Vv=V"and V= (),

iel el
Definition 1.5.6. A vector space V is the internal direct sum of a family F = {S; | i €
I'} of subspaces of V', written

V=@PFroav=EEs

el
if the following hold:
(1) (Join of the family) V is the sum (join) of the family V' =73, S;
(2) (Independence of the family) For each 7 € I,
JFi
In this case,

e cach S, is called a direct summand of V.

o if F ={51,...,5,} is a finite family, the direct sum is often written V' = S; &
B S,
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o if V=S5@T, then T is called a complement of S in V.

If S and T are subspaces of V', then we may always say that the sum S + T exists.
However, to say that the direct sum of S and T exists or to write S & T is to imply that
SNT = {0}. Thus, while the sum of two subspaces always exists, the direct sum of two
subspaces does not always exist. Similar statements apply to families of subspaces of V.

Theorem 1.5.7. Let F = {V; | i € I} be any family of vector spaces over F. The

following are equivalent:
(1) (Independence of the family) For each i € I,
Si ﬂ <Z Sj) = {0}.
i

(2) (Uniqueness of expression for 0) The zero vector cannot be written as a sum of

nonzero vectors from distinct subspaces of F.

(8) (Uniqueness of expression) Every nonzero vector v € V' has a unique, except for

order of terms, expression as a sum
v=8+...+8,
of nonzero vectors from distinct subspaces in F.
Hence, a sum
V=) 5
el
is direct if and only if any one of (1)-(3) holds.
Proof. (1) = (2) Suppose that (2) fails, that is,

028j1+...+8j"

where the nonzero vectors s;,’s are from distinct subspaces of S;,. Then n > 1 and,

hence,

—8j; = Sjy ...+ Sj,
which violates (1).
(2) = (3) If (2) holds and

v=81+...+s,=t1+...+1,
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where the terms are nonzero and both the s;’s and the ¢;’s belong to distinct subspaces
in . Then

0281+...—|—Sn—t1—...—tn.

Now, by collecting terms from the same subspaces, we may write

O:(Sil_til)+"‘+(5ik_tik)
+Sik+1+"'+sin_tik+1_"‘_tim‘

Then (2) implies that m =n =k and s;, =¢;, forallu=1,... k.
(3) = (1)

O#vGSiﬂ<ZSj> =v=s¢cS and s, =s; +...+5;,

JF
where s;, € S;, are nonzero which violates (3). O
Example 1.5.8. Let A = {(z,0) € R* | z € R} and let B = {(0,y) € R? | y € R}. Then
R? = A® B since ANB = {0} and R> = A+ B. Any element (z,y) of R? can be written

(z,y) = (2,0) + (0,9).

Proposition 1.5.9. Suppose U and W are subspaces of the vector space V' over a field
F. Consider the map
a:UsW =V

defined by o(u, w) = u+w. Then
e « is injective if and only if UNW = {0}.
o « s surjective if and only if U U W spans V.

Example 1.5.10. Let A = {(2,0) e R* | x € R} and let C = {(y,y) € R* | y € R}.
Then R? = A @ C. To see this, note that the map

a: A® B — R?
(z,y) =z +y

is injective since AN C = {0}. Moreover, « is a surjective map since any element (z, )
of R? can be written as
(,y) = (x—y,0)+ (y,9).
—— N~
€A eC

Thus, by the above proposition A U C' spans R2.
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Example 1.5.11. Let A € M,, be a matrix. Then A can be written in the form

1 1
A:§(A+At)+§(A—At):B+C (1.2)
where A’ is the transpose of A. Verify that B is symmetric and C' is skew-symmetric.
Thus (1.2) is a decomposition of A as a sum of a symmetric matrix (A" = A) and a

skew-symmetric matrix (A" = —A).

Exercise 1.5.12. Show that the sets Sym and SkewSym of all symmetric and skew-

symmetric matrices in M,, are subspaces of M,,.

Thus, we have
M.,, = Sym + SkewSym.

Furthermore, if S,S" € Sym and T,7T" € SkewSym such that S+ T = S’ + T’, then the
matrix
U=S5-58=T-T € SymnN SkewSym.

Hence, provided that char(F') # 2, we must have U = 0. Thus,

M,, = Sym & SkewSym.

1.6 Bases of a Vector Space

Theorem and Definition 1.6.1. Let S be a set of vectors in V. The following are

equivalent:
(i) S is L.I and spans V.
(ii) Every nonzero vector v € V' is an essentially unique L.C of vectors in S.

(iii) S is a minimal spanning set, that is, S spans V' but any proper subset of S does

not span V.
(iv) S is a maximal L.T set, that is, S is L.I but any proper superset of S is not L.I.

A set of vectors in V' that satisfies any (and hence all) of these conditions is called a
basis for V.

Proof. (i) <— (ii) by Theorem 1.4.3.

(i) = (iii) By given S is L.I and a spanning set, V' = span(S). Suppose that any
proper subset S’ of S spans V. Let s € S — S’. Since s € V, s is a L.C of the vectors in
S’ which is a contradiction to the fact that S is L.I.



12 1. Vector Spaces

(iii) = (i) If S is a minimal spanning set, then it must be L.I. For if not, some vector
s € S would be a L.C of the other vectors in S, S — {s}. Then S — {s} would be a
proper spanning subset of S which is not possible.

(i) & (iv): exercise O
Example 1.6.2.
(1) Find a basis of the subspace of R? given by

X
V=<_ |yl eR|2z—-2y+52=0

z

T

Solution: Let v = | y | be any vector in V. Then

z
x 2y — 5z 2y —5z
z z 0 z
2 -5
=yl1]+2] 0|,y zeR
0
This shows that the set )
2 -5
{u,v} = 1l,]0
0 1

\
spans V. It is easy to see that the set {u,v} is L.I. Thus it is a basis for the subspace
V of R3.

(2) The set S = { (;) : ( 11) } is a basis of R?,

(3) The i*" standard vector in F™ is the vector e; that has 0’s in all coordinate positions

except the i*", where it has a 1. Thus,
e1=(1,...,0), ea=(0,1,...,0),...,en = (0,...,0,1).

The set {eq,...,e,} is called the standard basis for F".
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Theorem 1.6.3. Let V' be a nonzero vector space. Let I be a L.I set in'V and let S be
a spanning set in V' containing I. Then there is a basis B for V' for which I C B C S.

In particular,
(1) Any vector space, except the zero space {0}, has a basis.
(2) Any L.I set in V' is contained in a basis.

(3) Any spanning set in V' contains a basis.

1.7 Dimension of a Vector Space

The following theorem says that if a vector space V has a finite spanning set S, then
the size of any linearly independent set cannot exceed the size of S.

Theorem 1.7.1. Let V' be a vector space and assume that the vectors vy, ...,v, are L.1

and the vectors si,...,Sm span V. Then n < m.

Corollary 1.7.2. IfV has a finite spanning set, then any two bases of V' have the same

size.

Theorem 1.7.3. If V is a vector space, then any two bases for V have the same cardi-

nality.

Definition 1.7.4. A vector space V is finite-dimensional if it is the zero space or if it
has a finite basis. All other vector spaces are infinite-dimensional. The dimension of

the a non-zero vector space V is the cardinality of any basis for V.

(a) The dimension of the zero space is 0.

(b) If a vector space V has a basis of cardinality k, we say that V is k-dimensional
and write dim(V') = k.

(c) If S is a subspace of V', then dim(S) < dim(V). If in addition dim(S) = dim(V) <
0o, then S =V.

Theorem 1.7.5. Let V' be a vector space.
1) If B is a basis for V and if B =By UBy and By N By =0, then V = (B;) & (By).

2) Let V.=S@&T. If By is a basis for S and By is a basis for T, then By N By = ()
and B = By U By is a basis for V.
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Proof. 1) If BN By = 0 and B = By U By is a basis for V, then 0 ¢ B; U By. But,
if a nonzero vector v € (By) N (Bs), then By N By # 0, a contradiction. Hence, {0} =
(B1) N (Bz). Furthermore, since By U By is a basis for V and for (B;) + (Bs), we must
have V = (B;) + (By). Thus, V = (B;) & (B,).

2) fV =Sa@T, then SNT = {0}. Since 0 & By U By, we have By N By = (). Let
v € V. Then v has the form

a iy + ...+ apu, +bv; + .o+ by,

for uy,...,u, € By and vy, ..., v, € By which implies v € (B; U Bs) and thus B; U By is
a basis for V' by Theorem 1.6.1. n

Theorem 1.7.6. Let S and T be subspaces of a vector space V. Then
dim(S) + dim(7") = dim(S + T') + dim(S N7T).
In particular, if T is any complement of S in V', then
dim(S) + dim(7") = dim(V) = dim(S & T).

Proof. Suppose that B = {v; | i € I} is a basis for SN T. Extend this to a basis AU B
for S and to a basis BUC for T, where A = {u; | j € J} and C = {wy, | k € K},
ANB=0and CNB = 0.

Claim: AUBUC is a basis for S + T

Clearly, (AUBUC) = S+ T. It remains to show that the set AUBUC is L.I. To see
this, suppose to the contrary that

a1 +...+a,v, =0

where v; € AUBUC and «; # 0 for all i. Then there must be vectors v; € AN C since
AU B and BUC are L.I. Now, isolating the terms involving the vectors from A, say
vy, ...,V without loss of generality, on one side of the equality shows that there is a
nonzero vector in x € AN (BUC).

That is,

T = a1v + ...+ ARV = (k41 Vk41 + ...+ ayv,

-~

€ sp;rn(A) € span(BUC)
=z € span(A) Nspan(BUC) C SNT = (B) (span(A) C 5)
=z € (A)N(B) = {0}

= x = 0, a contradiction.
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Hence, AU BUC is L.I and a basis for S + T. Now,
dim(S) + dim(7T) = AU B| + |BUC|
= |Al +|B| + |B] +[C|
= |A| + |B] +|C| + dim(SNT)
= dim(S +7T) +dim(SNT),
as desired. ]






Chapter 2

Linear Transformations

2.1 Linear Transformations

Roughly speaking, a linear transformation is a function from one vector space to another
that preserves the vector space operations.

Definition 2.1.1. Let V and W be vector spaces over a field F'. A function7:V — W

is a linear transformation (L.T) if
T(u+v) =7(u) +7(v) and 7(ru) = r7(u)

for all scalars » € F and vectors u,v € V. The set of all linear transformations from
V' — W is denoted by L(V,W).

o AL.T from V to V is called a linear operator on V. The set of all linear operators
on V is denoted by L(V).

o A linear operator on a real vector space is called a real operator and a linear

operator on a complex vector space is called a complex operator.

o A L.T from V to the base field F' (thought of as a vector space over itself) is called
a linear functional on V. The set of all linear functions on V' is denoted by V*
and called the dual space of V.

Definition 2.1.2. The following terms are also employed:
e homomorphism for L.T denoted also by Hom(V, W);
e endomorphism for L. operator denoted also by End(V);
e monomorphism (embedding) for injective L.T;

e epimorphism for surjective L.T;

17
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e isomorphism (invertible L.T) for bijective L.T 7 € L(V,W). In this case,
we write V' =2 W to say that V and W are isomorphic. The set of all linear
isomorphisms from V' to W is denoted GL(V, W).

e automorphism for bijective L. operator. The set of all automorphisms of V is
denoted Auto(V) or GL(V).

Example 2.1.3.

© The derivative D : V' — V is a linear operator on the vector space V' of all infinitely

differentiable functions on R.
© Let V =R? and let W =R. Define L : V — W by f(v,w) =vw. Is L a L.T?

© The integral operator 7 : F[z] — F[x] defined by

(= [ s
0
is a linear operator on F[z].

© Let V =R? and let W = R3. Define L : V — W by L(v,w) = (v,w —v,w). Is L
a L.T?

© Let A be an m x n matrix over F'. The function

TA:Fn—>Fm,

v — Av,

where all vectors are written as column vectors, is a L.T from F™ — F™.
Note:
© The set L(V, W) is a vector space in its own right.

© The identity transformation, Iy : V. — V, given by Iy(z) = x for all x € V.
Clearly, since Iy (av + bu) = av + bu = aly (u) + bly (v), Iy is L.T.

© The zero transformation, 7o : V. — W, given by 7o(x) =0 for all x € V', is a L.T.

O If 7 € £(V) such that 72 = 7, we call 7 an idempotent operator.
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2.2 Basic properties of Linear Transformations
In the following we collect a few facts about linear transformations:
Theorem 2.2.1. Let 7 be a L. T from a vector space V' into a vector space W. Then
i) 7(0) =0.
i) T(—v) = —7(v) for allv e V.
iii) T(u—v) =T1(u) — 7(v) for all u,v € V.
i) T (O g akvr) = > p_y axT(vg) for all vy, ... v € V.

Theorem 2.2.2. Let V and W be vector spaces over over a field F' and let B = {v; |
i €I} is a basis for V.. Then for any T € L(V,W), we have im(7) = (7(B)).

Theorem 2.2.3.

a) The set L(V,W) is a vector space under ordinary addition of functions and scalar

multiplication of functions by elements of F.
b) If o € L(U,V) and 7 € L(V, W), then the composition To is in L(U,W).
c) If T € L(V,W) is bijective, then 7= € LIW,V).
Proof. b) Since for all scalars r, s € F and vectors u,v € U

To(ru+ sv) = 7(ro(u) + so(v)) (0 € L(U,V))
=r(ro(u)) + s(ro(v)) (7€ LV, W))
= 710 € L(UW).

c) Let 7: V — W be a bijective L.T. Then 77! : W — V is a well-defined function
and since any two vectors w; and ws in W have the form w; = 7v; and wy = Tvy, We

have

7 (rwy 4 swy) = 77 H(rTvp + 5T9)
= 7M1 (rvy + s13))
= rvU; + SV
=r7 Hwy) + st (wy)

= e L(V,W).
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One of the easiest ways to define a L. T is to give its values on a basis.

Theorem 2.2.4. Let V and W be vector spaces and let B = {v; | i € I} be a basis for
V. Then we can define a L.T 1€ L(V,W) by specifying the values of 7(v;) arbitrarily
for all v; € B and extending T to V' by linearity, that is,

T(avy + ... 4 apvy) = a17(v1) + . .. + a7 (V).

This process defines a unique L.T, that is, if 7,0 € L(V,W) satisfying 7(v;) = o(v;) for
all v; € B, then T = 0.

Note that if 7 € L(V, W) and if S is a subspace of V, then the restriction 7|.S of 7 to
SisaL.T from S to W.

2.3 The Kernel and Image of a L.T

Definition 2.3.1. Let 7 € L(V,W).

® The subspace
ker(1) ={v eV |7(v) =0}

is called the kernel of .

® The subspace
im(r) ={r(v) e W |v eV}

is called the image of 7.
©® The dimension of ker(7) is called the nullity of 7 and is denoted by null(7).
©® The dimension of im(7) is called the rank of 7 and is denoted by rk(7).
Remark and Exercise 2.3.2.
. ker(7) is a subspace of V.
. im(7) is a subspace of W.
Theorem 2.3.3. Let 7 € L(V,W). Then
1) 7 is surjective if and only if im(7) = W.

2) 7 is injective if and only if ker() = {0}.
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Proof. 1) is clear. 2) Observe that,
T(v) =7(u) & 17(v—u) =0 u—v € ker(r) = {0}

which implies u = v and, hence, 7 is injective. Conversely, suppose 7 is injective and
u € ker(7). Then 7(u) = 0 = 7(0) and, hence, u = 0. O

Theorem 2.3.4. Let 7 € L(V, W) be an isomorphism. Let S C V. Then
a) S spans V if and only if 7(S) = {7(u) | u € S} spans W.
b) Sis L.IinV if and only if 7(S) is L.I in W.
c) Sis a basis for V if and only if 7(S) is a basis for W.
Proof. a) V=(S)< W =im(r) =7((5)) = (7(9)) (since 7 € GL(V, W)).

b) By given S is L.I. For any s1,...,s, € S, we have

Zaisi:O<:>ai:Ofor all 1,

=1

which implies

T <Z am) = Z a;7(s;) = 0 = 7(0)

= Y a;5;=0 (1 € GL(V,W))
=1

= a=...=a,=0 (SisLlI)
= 7(5) is L.I ( since this is true for all s; € S).

Conversely, if 7(S) is L.I we have for any 7(s1),...,7(s,) € 7(5)

0= Zaﬂ(si) =T (Z aisi> = T(O)

= zn:aisi =0 (7 € GL(V,W))

i=1
= a=...=a,=0 (7(5)is L.I)
= Sis L.I.

c) Sis a basis for V iff, by a) and b), 7(5) is L.Iin W and W = (7(.5)) which implies

7(S) is a basis for W.
[
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Isomorphisms Preserve Bases

An isomorphism can be characterized as a L.T 7 : V' — W that maps a basis for V to a
basis for W.

Theorem 2.3.5. A L.T 7 € L(V,W) is an isomorphism if and only if there is a basis
B for V' for which 7(B) is a basis for W. In this case, T maps any basis of V' to a basis
of W.

Proof. 7 € GL(V,W) = 7 is bijective. Thus by Theorem 2.2.2 7(B) is a basis for W.
Conversely, if 7(B) is a basis for W, then for all v € V, there exist unique elements

ai,...,a, € F'and uq,...,u, such that v = ayu; + ... + a,u,. Therefore,

0="7(u) =a17(u1) + ...+ a,7(uy)
sa=...=a,=0
= ker(7) = {0}

= T 1Is Injective.

Since W = (7(B)), we have for all w € W there exist unique elements ay,...,a, € F
such that

w=a17(u) + ...+ a,7(u,) = T(arur + . .. + ayuy).
So there exists v = aju; + ... + ayu, € V such that w = 7(u) € 7(V) = im(7)
which implies W C im(7). Clearly, im(7) C W and, hence, 7 is surjective. Thus 7 is

bijective. n

Isomorphisms Preserve Dimension

The following theorem says that, upto isomorphism, there is only one vector space of
any given dimension over a given field.

Theorem 2.3.6.

(i) Let V and W be vector spaces over F. Then V = W if and only if dim(V) =
dim(W).

ii) Ifn is a natural number, then any n-dimensional vector space over I’ is isomorphic
to F™.

Proof. (i) V.= W = 3r € GL(V,W). Thus B is a basis for V implies 7(B) is a
basis for W and dim(V) = |B| = |7(B)| = dim(W). Conversely, if dim(V) = |B,| =
|Bs| = dim(W), where B; (resp. Bs) is a basis for V' (resp. W), then 37 € GL(By, Bs).
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Extending 7 to V' by linearity defines a unique 7 € L(V, W) by Theorem 2.2.4 and 7 is an
isomorphism because it is surjective and injective, that is, im(7) = W and ker(7) = {0}.
(ii) Clear by (i). O

2.4 The Rank-Nullity Theorem

Lemma 2.4.1. If V and W are vector spaces over a field F and 7 € L(V, W), then any

complement of the kernel T is isomorphic to the range of T, that is,
V' = ker(7) & ker(7) = ker(7)° = im(7)
where ker(7)¢ is any complement of ker(r).

Proof. V' = ker(1) @ ker(7)¢ = dim(V') = dim (ker(7)) + dim (ker(7)¢). Let 7¢ be the

restriction of 7 to ker(7)¢. That is,
7¢ : ker(7)¢ — im(7).
We claim that the map 7¢ is bijective. O]
To see this, note that the map 7¢ is injective since
ker(7¢) = ker(7) Nker(7)¢ = {0}.

Clearly, im(7¢) C im(7). For the reverse inclusion, if 7(v) € im(7), then since v = v+ w
for u € ker(7) and w € ker(7)¢, we have

7(v) = 7(u) + 7(w) = 7(w) = 7(w) € im(7°).
Thus im(7¢) = im(7) which implies
7¢ : ker(7)¢ — im(7)
is an isomorphism.

Theorem 2.4.2 (Rank-Nullity Theorem). Let V' and W be vector spaces over a field
F and let 7 € L(V,W). Then

dim(ker(7)) + dim(im(7)) = dim(V)

or in other notation
rk(7) + null(7) = dim(V)
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Proof.
dim(V') = dim(ker(7)) + dim(ker(7)¢)
= dim(ker(7)) + dim(im(7)) (Lemma 2.4.1)
= null(7) + rk(7)
which completes the proof. O

Corollary 2.4.3. Let V' and W be vector spaces over a field F' and 7 € L(V,W). If
dim(V) = dim(W), then the following are equivalent:

i) T is injective.
i) T is surjective.
i) rk(T) = dim(V).

Proof. By the Rank-Nullity Theorem, rank(7) 4+ null(7) = dim(V') and , we have

Thm 2.3.
risl1 5 ker(7) = null(7) = {0}
=
N Th .
RN () = rk(r) = dim(V) ™ dim (1)
R4 =
Sim(r) =W

< 7 is onto which completes the proof.
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