Dilla University

Department of Mathematics

Advanced Linear Algebra Lecture Note

by

Dereje Kifle (PhD)

Contents

1	Vec	Vector Spaces				
	1.1 Vector Spaces					
	1.2	Examples of a vector space	4			
	1.3	Subspaces, Linear combinations and Generators	4			
	1.4	Linear Dependence and Independence of Vectors	5			
	1.5	Direct sum and direct product of subspaces	6			
	1.6	Bases of a Vector Space	11			
	1.7	Dimension of a Vector Space	13			
2	Line	ear Transformations	17			
	2.1	Linear Transformations	17			
	2.2	Basic properties of Linear Transformations	19			
	2.3	The Kernel and Image of a L.T	20			
	2.4	The Rank-Nullity Theorem	23			

Advanced Linear Algebra Worksheet I

1. Let V be a vector space and $W \subseteq V$ be a subspace. Define a relation \sim_W on V as follows:

$$v_1 \sim_W v_2$$
 if and only if $v_1 - v_2 \in W$.

Show that \sim_W is an equivalence relation on V. We write the equivalence classes as

$$[v_1] = \{v_2 \in V \mid v_1 - v_2 \in W\} = v_1 + W.$$

Set $V/W = \{v + W \mid v \in V\}$. Addition and scalar multiplication on V/W are defined as follows. Let $v_1, v_2 \in V$ and $c \in F$. Define

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W;$$

 $c(v_1 + W) = cv_1 + W.$

Show that V/W is an F-vector space.

2. Let V be an F-vector space of dimension n. Let $\tau \in \mathcal{L}(V)$ such that $\tau^2 = 0$. Prove that the image of τ is contained in the kernel of τ and hence the dimension of the image of τ is at most $\frac{n}{2}$.

Chapter 1

Vector Spaces

1.1 Vector Spaces

Definition 1.1.1. Let F be a field. A *vector space* over F is a nonempty set V together with two operations:

- \circ addition: assigns to each pair $(u, v) \in V \times V$ a vector $u + v \in V$.
- \circ scalar multiplication: assigns to each pair $(r, u) \in F \times V$ a vector ru in V.

Furthermore, the following properties must be satisfied:

- Associativity of addition: For all vectors $u, v, w \in V$, u + (v + w) = (u + v) + w.
- Commutativity of addition: For all vectors $u, v \in V$, u + v = v + u.
- Existence of zero: There is a zero vector $0 \in V$ with the property that 0 + u = u + 0 = u for all vectors $u \in V$.
- Existence of additive inverses: For each vector $u \in V$, there is a vector in V, denoted by -u, with the property that u + (-u) = (-u) + u = 0.
- Properties of scalar multiplication: For all scalars $a, b \in F$ and for all vectors $u, v \in V$,

$$a(u + v) = au + av$$
$$(a + b)u = au + bu$$
$$(ab)u = a(bu)$$
$$1u = u$$

In the above definition

4 1. Vector Spaces

- \circ Elements of F (resp. V) are referred to as scalars (resp. vectors).
- \circ The first four properties are equivalent to (V, +) is an abelian group.
- \circ V is sometimes called an F-space.
- \circ If $F = \mathbb{R}$ (resp. \mathbb{C}), then V is a real (resp. complex) vector space.

1.2 Examples of a vector space

1) Let F be a field. The set V_F of all functions from F to F is a vector space over F, under the operations of ordinary addition and scalar multiplication of functions:

$$(f+g)(x) = f(x) + g(x)$$
, and $(af)(x) = a(f(x))$.

2) The set $M_{m \times n}(F)$ of all $m \times n$ matrices with entries in a field F is a vector space over F, under the operations of matrix addition and scalar multiplication.

1.3 Subspaces, Linear combinations and Generators

Most algebraic structures contain substructures.

Definition 1.3.1. A subspace of a vector space V is a subset S of V that is a vector space in its own right under the operations obtained by restricting the operations of V to S. To indicate that S is a subspace of V, we use the notation $S \leq V$. If S is a subspace of V but $S \neq V$, we say that S is a proper subspace of V and it is denoted by S < V. The zero subspace of V is $\{0\}$.

Definition 1.3.2. Let S be a nonempty subset of a vector space V. A linear combination (L.C) of vectors in S is an expression of the form

$$a_1v_1 + \ldots + a_nv_n$$

where $v_1 \dots v_n \in S$ and $a_1, \dots, a_n \in F$. The scalars a_i are called the *coefficients* of the linear combination. A L.C is trivial if every coefficient a_i is zero. Otherwise, it is non trivial.

Theorem 1.3.3. A non-empty subset S of a vector space V is a subspace of V if and only if S is closed under addition and scalar multiplication or equivalently, S is closed under linear combinations, that is,

$$a, b \in F, u, v \in S \Longrightarrow au + bv \in S.$$

Example 1.3.4. Consider the vector space V(n,2) of all binary n-tuples, that is, n-tuples of 0's and 1's. The weight W(v) of a vector $v \in V(n,2)$ is the number of non-zero coordinates in v. Let E_n be the set of all vectors in V of even weight. Then $E_n \leq V(n,2)$.

Proof. For vectors $u, v \in V(n, 2)$, show that

$$W(u+v) = W(u) + W(v) - 2W(u \cap v)$$
(1.1)

where $u \cap v$ is the vector in V(n,2) whose i^{th} component is the product of the i^{th} components of u and v, that is, $(u \cap v)_i = u_i \cdot v_i$. Let u and v be elements of E_n . Then by definition $\mathcal{W}(u)$ and $\mathcal{W}(v)$ are even which by (1.1) implies $\mathcal{W}(u+v)$ is even, that is, $u+v \in E_n$. Let $a \in \mathbb{F}_2$ and let $u \in E_n$. Clearly, $\mathcal{W}(au)$ is even which implies $au \in E_n$. Thus $E_n \leq V(n,2)$, known as the even weight subspace of V(n,2).

Definition 1.3.5. The subspace *spanned (or generated)* by a nonempty set S of vectors in V is the set of all linear combinations of vectors from S:

$$\langle S \rangle = \operatorname{Span}(S) = \left\{ \sum_{i=1}^{n} r_i v_i \mid r_i \in F, v_i \in S \right\}.$$

When $S = \{v_1, \ldots, v_n\}$ is a finite set, we use the notation $\langle v_1, \ldots, v_n \rangle$ or span (v_1, \ldots, v_n) . A set S of vectors in V is said to be span V, or generates V, if V = Span(S).

Any superset of a spanning set is also a spanning set and all vector spaces have spanning set since V spans itself.

1.4 Linear Dependence and Independence of Vectors

Definition 1.4.1. Let V be a vector space. A nonempty set S of vectors in V is linearly independent (L.I) if for any distinct vectors s_1, \ldots, s_n in S

$$a_1s_1 + \ldots + a_ns_n = 0 \Rightarrow a_i = 0$$
 for all i .

In other words, S is L.I if the only L.C of vectors from S that is equal to 0 is the trivial L.C, all of whose coefficients are 0. If S is not L.I, it is said to be linearly dependent (LD).

A L.I set of vectors cannot contain the zero vector, since $1 \cdot 0 = 0$ violates the condition of linear independence.

6 1. Vector Spaces

Definition 1.4.2. Let S be a nonempty set of vectors in V. To say that a nonzero vector $v \in V$ is an essentially unique L.C of the vectors in S is to say that, up to the order of terms, there is one and only one way to express v as a L.C. $v = \sum_{i=1}^{n} a_i s_i$ where the s_i 's are distinct vectors in S and the coefficients a_i are nonzero. More explicitly, $v \neq 0$ is an essentially unique L.C of vectors in S if $v \in \langle S \rangle$ and if whenever

$$v = a_1 s_1 + \ldots + a_n s_n$$
 and $v = b_1 t_1 + \ldots + b_m t_m$

where the s_i 's are distinct and t_i 's are distinct and all coefficients are nonzero, then m = n and after a reindexing of the $b_i t_i$'s if necessary, we have $a_i = b_i$ and $s_i = t_i$ for all i = 1, ..., n.

Theorem 1.4.3. Let $S \neq \{0\}$ be a nonempty set of vectors in V. The following are equivalent:

- (a) S is L.I.
- (b) Every nonzero vector $v \in \text{span}(S)$ is an essentially unique L.C of the vectors in S.
- (c) No vector in S is a L.C of other vectors in S.

Proof. (a) \Rightarrow (b) Suppose that

$$0 \neq v = a_1 s_1 + \ldots + a_n s_n$$
 and $v = b_1 t_1 + \ldots + b_m t_m$

where the s_i 's are distinct and t_i 's are distinct and the coefficients are nonzero. By subtracting and grouping s's and t's that are equal, we can write

$$0 = (a_{i_1} - b_{i_1}) s_{i_1} + \ldots + (a_{i_k} - b_{i_1}) s_{i_k}$$
$$+ a_{i_{k+1}} s_{i_{k+1}} + \ldots + a_{i_n} s_{i_n} - b_{i_{k+1}} t_{i_{k+1}} - \ldots - b_{i_m} t_{i_m}$$

(a) $\Rightarrow m = n = k$ and $a_{i_u} = b_{i_u}$ and $s_{i_u} = t_{i_u}$ for all $u = 1, \dots, k$.

(b)
$$\Rightarrow$$
 (c) and (c) \Rightarrow (a) is left as an exercise.

1.5 Direct sum and direct product of subspaces

Definition 1.5.1. Let V_1, \ldots, V_n be vector spaces over a field F. The external direct sum of V_1, \ldots, V_n , denoted by $V_1 \boxplus \ldots \boxplus V_n$ is the vector space V whose elements are ordered n-tuples:

$$V = \{(v_1, \dots, v_n) \mid v_i \in V_i, i = 1, \dots, n\}$$

with componentwise operations

$$(u_1, \dots, u_n) + (v_1, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n)$$
 and $r(u_1, \dots, u_n) = (ru_1, \dots, ru_n)$ for all $r \in F$.

Example 1.5.2. The vector space F^n is the external direct sum of n copies of F, that is, $F^n = F \boxplus \ldots \boxplus F$ where there are n summands on the right hand side.

The above construction can be generalized to any collection of vector spaces by generalizing the idea that an ordered n-tuple (v_1, \ldots, v_n) is just a function

$$f: \{1, \dots, n\} \to \bigcup V_i,$$

 $i \mapsto f(i).$

Definition 1.5.3. Let $\mathcal{F} = \{V_i \mid i \in I\}$ be any family of vector spaces over F. The direct product of \mathcal{F} is the vector space

$$\prod_{i \in I} V_i = \left\{ f : I \to \bigcup V_i \mid f(i) \in V_i \right\}$$

thought of as a subspace of the vector space of all functions from I to $\bigcup V_i$.

Note that

$$\prod_{i \in I} V_i = \{ v = (v_i)_{i \in I} \mid v_i \in V_i \} = \left\{ f : I \to \bigcup V_i \mid f(i) \in V_i \right\}.$$

If we define addition and scalar multiplication by

$$v + w = (f : I \to \bigcup V_i) + (g : I \to \bigcup V_i)$$

$$= (f + g : I \to \bigcup V_i) \text{ and}$$

$$av = a(f : I \to \bigcup V_i)$$

$$= (af : I \to \bigcup V_i)$$

or by

$$(v_i)_{i \in I} + (w_i)_{i \in I} = (v_i + w_i)_{i \in I}$$
 and $a(v_i)_{i \in I} = (av_i)_{i \in I}$

Then the direct product $\prod_{i \in I} V_i$ is a vector space over F.

8 1. Vector Spaces

Definition 1.5.4. Let $\mathcal{F} = \{V_i \mid i \in I\}$ be any family of vector spaces over F. The support of a function $f: I \to \bigcup V_i$ is the set

$$\mathrm{support}(f) = \{ i \in I \mid f(i) \neq 0 \}.$$

We say that f has finite support if f(i) = 0 for all but a finite number of $i \in I$.

Definition 1.5.5. Let $\mathcal{F} = \{V_i \mid i \in I\}$ be any family of vector spaces over F. The external direct sum of the family \mathcal{F} is the vector space

$$\bigoplus_{i \in I}^{\text{ext}} V_i = \left\{ f : I \to \bigcup V_i \mid f(i) \in V_i, f \text{ has finite support} \right\}.$$

thought of as a subspace of the vector space of all functions from I to $\bigcup V_i$.

If $V_i = V$ for all $i \in I$,

- we denote the set of all functions from I to V by V^{I} , and
- we denote the set of all functions in V^I that have finite support by $(V^I)_0$.

In this case, we have

$$\prod_{i \in I} V = V^I \text{ and } \bigoplus_{i \in I}^{\text{ext}} V = \left(V^I\right)_0.$$

Definition 1.5.6. A vector space V is the *internal direct sum* of a family $\mathcal{F} = \{S_i \mid i \in I\}$ of subspaces of V, written

$$V = \bigoplus \mathcal{F} \text{ or } V = \bigoplus_{i \in I} S_i$$

if the following hold:

- (1) (Join of the family) V is the sum (join) of the family $V = \sum_{i \in I} S_i$
- (2) (Independence of the family) For each $i \in I$,

$$S_i \bigcap \left(\sum_{j \neq i} S_j\right) = \{0\}.$$

In this case,

- each S_i is called a direct summand of V.
- if $\mathcal{F} = \{S_1, \ldots, S_n\}$ is a finite family, the direct sum is often written $V = S_1 \oplus \ldots \oplus S_n$.

• if $V = S \oplus T$, then T is called a *complement* of S in V.

If S and T are subspaces of V, then we may always say that the sum S + T exists. However, to say that the direct sum of S and T exists or to write $S \oplus T$ is to imply that $S \cap T = \{0\}$. Thus, while the sum of two subspaces always exists, the direct sum of two subspaces does not always exist. Similar statements apply to families of subspaces of V.

Theorem 1.5.7. Let $\mathcal{F} = \{V_i \mid i \in I\}$ be any family of vector spaces over F. The following are equivalent:

(1) (Independence of the family) For each $i \in I$,

$$S_i \bigcap \left(\sum_{j \neq i} S_j\right) = \{0\}.$$

- (2) (Uniqueness of expression for 0) The zero vector cannot be written as a sum of nonzero vectors from distinct subspaces of \mathcal{F} .
- (3) (Uniqueness of expression) Every nonzero vector $v \in V$ has a unique, except for order of terms, expression as a sum

$$v = s_1 + \ldots + s_n$$

of nonzero vectors from distinct subspaces in \mathcal{F} .

Hence, a sum

$$V = \sum_{i \in I} S_i$$

is direct if and only if any one of (1)-(3) holds.

Proof. (1) \Rightarrow (2) Suppose that (2) fails, that is,

$$0 = s_{i_1} + \ldots + s_{i_n}$$

where the nonzero vectors s_{j_i} 's are from distinct subspaces of S_{j_i} . Then n > 1 and, hence,

$$-s_{j_1} = s_{j_2} \dots + s_{j_n}$$

which violates (1).

 $(2) \Rightarrow (3)$ If (2) holds and

$$v = s_1 + \ldots + s_n = t_1 + \ldots + t_n$$

1. Vector Spaces

where the terms are nonzero and both the s_i 's and the t_i 's belong to distinct subspaces in \mathcal{F} . Then

$$0 = s_1 + \ldots + s_n - t_1 - \ldots - t_n$$
.

Now, by collecting terms from the same subspaces, we may write

$$0 = (s_{i_1} - t_{i_1}) + \ldots + (s_{i_k} - t_{i_k})$$

+ $s_{i_{k+1}} + \ldots + s_{i_n} - t_{i_{k+1}} - \ldots - t_{i_m}$.

Then (2) implies that m = n = k and $s_{i_u} = t_{i_u}$ for all u = 1, ..., k. (3) \Rightarrow (1)

$$0 \neq v \in S_i \cap \left(\sum_{j \neq i} S_j\right) \Rightarrow v = s_i \in S_i \text{ and } s_i = s_{j_1} + \ldots + s_{j_n}$$

where $s_{j_k} \in S_{j_k}$ are nonzero which violates (3).

Example 1.5.8. Let $A = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$ and let $B = \{(0,y) \in \mathbb{R}^2 \mid y \in \mathbb{R}\}$. Then $\mathbb{R}^2 = A \oplus B$ since $A \cap B = \{0\}$ and $\mathbb{R}^2 = A + B$. Any element (x,y) of \mathbb{R}^2 can be written as

$$(x,y) = (x,0) + (0,y).$$

Proposition 1.5.9. Suppose U and W are subspaces of the vector space V over a field F. Consider the map

$$\alpha : U \oplus W \to V$$

defined by $\alpha(u, w) = u + w$. Then

- α is injective if and only if $U \cap W = \{0\}$.
- α is surjective if and only if $U \cup W$ spans V.

Example 1.5.10. Let $A = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$ and let $C = \{(y,y) \in \mathbb{R}^2 \mid y \in \mathbb{R}\}$. Then $\mathbb{R}^2 = A \oplus C$. To see this, note that the map

$$\alpha : A \oplus B \to \mathbb{R}^2$$

$$(x,y) \mapsto x + y$$

is injective since $A \cap C = \{0\}$. Moreover, α is a surjective map since any element (x, y) of \mathbb{R}^2 can be written as

$$(x,y) = \underbrace{(x-y,0)}_{\in A} + \underbrace{(y,y)}_{\in C}.$$

Thus, by the above proposition $A \cup C$ spans \mathbb{R}^2 .

Example 1.5.11. Let $A \in \mathcal{M}_n$ be a matrix. Then A can be written in the form

$$A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t) = B + C$$
 (1.2)

where A^t is the transpose of A. Verify that B is symmetric and C is skew-symmetric. Thus (1.2) is a decomposition of A as a sum of a symmetric matrix ($A^t = A$) and a skew-symmetric matrix ($A^t = -A$).

Exercise 1.5.12. Show that the sets Sym and SkewSym of all symmetric and skew-symmetric matrices in \mathcal{M}_n are subspaces of \mathcal{M}_n .

Thus, we have

$$\mathcal{M}_n = \text{Sym} + \text{SkewSym}.$$

Furthermore, if $S, S' \in \text{Sym}$ and $T, T' \in \text{SkewSym}$ such that S + T = S' + T', then the matrix

$$U = S - S' = T - T' \in \text{Sym} \cap \text{SkewSym}.$$

Hence, provided that $char(F) \neq 2$, we must have U = 0. Thus,

$$\mathcal{M}_n = \operatorname{Sym} \oplus \operatorname{SkewSym}.$$

1.6 Bases of a Vector Space

Theorem and Definition 1.6.1. Let S be a set of vectors in V. The following are equivalent:

- (i) S is L.I and spans V.
- (ii) Every nonzero vector $v \in V$ is an essentially unique L.C of vectors in S.
- (iii) S is a minimal spanning set, that is, S spans V but any proper subset of S does not span V.
- (iv) S is a maximal L.I set, that is, S is L.I but any proper superset of S is not L.I.

A set of vectors in V that satisfies any (and hence all) of these conditions is called a basis for V.

Proof. (i) \longleftrightarrow (ii) by Theorem 1.4.3.

(i) \Rightarrow (iii) By given S is L.I and a spanning set, $V = \operatorname{span}(S)$. Suppose that any proper subset S' of S spans V. Let $s \in S - S'$. Since $s \in V$, s is a L.C of the vectors in S' which is a contradiction to the fact that S is L.I.

1. Vector Spaces

(iii) \Rightarrow (i) If S is a minimal spanning set, then it must be L.I. For if not, some vector $s \in S$ would be a L.C of the other vectors in S, $S - \{s\}$. Then $S - \{s\}$ would be a proper spanning subset of S which is not possible.

$$(i) \Leftrightarrow (iv)$$
: exercise

Example 1.6.2.

(1) Find a basis of the subspace of \mathbb{R}^3 given by

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - 2y + 5z = 0 \right\}.$$

Solution: Let $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be any vector in V. Then

$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y - 5z \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} -5z \\ 0 \\ z \end{pmatrix}$$
$$= y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -5 \\ 0 \\ 1 \end{pmatrix}, \ y, z \in \mathbb{R}.$$

This shows that the set

$$\{u, v\} = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} -5\\0\\1 \end{pmatrix} \right\}$$

spans V. It is easy to see that the set $\{u, v\}$ is L.I. Thus it is a basis for the subspace V of \mathbb{R}^3 .

- (2) The set $S = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is a basis of \mathbb{R}^2 .
- (3) The i^{th} standard vector in F^n is the vector e_i that has 0's in all coordinate positions except the i^{th} , where it has a 1. Thus,

$$e_1 = (1, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$$

The set $\{e_1, \ldots, e_n\}$ is called the standard basis for F^n .

Theorem 1.6.3. Let V be a nonzero vector space. Let I be a L.I set in V and let S be a spanning set in V containing I. Then there is a basis \mathcal{B} for V for which $I \subset \mathcal{B} \subset S$. In particular,

- (1) Any vector space, except the zero space $\{0\}$, has a basis.
- (2) Any L.I set in V is contained in a basis.
- (3) Any spanning set in V contains a basis.

1.7 Dimension of a Vector Space

The following theorem says that if a vector space V has a finite spanning set S, then the size of any linearly independent set cannot exceed the size of S.

Theorem 1.7.1. Let V be a vector space and assume that the vectors v_1, \ldots, v_n are L.I and the vectors s_1, \ldots, s_m span V. Then $n \leq m$.

Corollary 1.7.2. If V has a finite spanning set, then any two bases of V have the same size.

Theorem 1.7.3. If V is a vector space, then any two bases for V have the same cardinality.

Definition 1.7.4. A vector space V is *finite-dimensional* if it is the zero space or if it has a finite basis. All other vector spaces are *infinite-dimensional*. The *dimension* of the a non-zero vector space V is the cardinality of any basis for V.

- (a) The dimension of the zero space is 0.
- (b) If a vector space V has a basis of cardinality k, we say that V is k-dimensional and write $\dim(V) = k$.
- (c) If S is a subspace of V, then $\dim(S) \leq \dim(V)$. If in addition $\dim(S) = \dim(V) < \infty$, then S = V.

Theorem 1.7.5. Let V be a vector space.

- 1) If \mathcal{B} is a basis for V and if $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ and $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, then $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.
- 2) Let $V = S \oplus T$. If \mathcal{B}_1 is a basis for S and \mathcal{B}_2 is a basis for T, then $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$ and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for V.

1. Vector Spaces

Proof. 1) If $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$ and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for V, then $0 \notin \mathcal{B}_1 \cup \mathcal{B}_2$. But, if a nonzero vector $v \in \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle$, then $\mathcal{B}_1 \cap \mathcal{B}_2 \neq \emptyset$, a contradiction. Hence, $\{0\} = \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle$. Furthermore, since $\mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for V and for $\langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle$, we must have $V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle$. Thus, $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

2) If $V = S \oplus T$, then $S \cap T = \{0\}$. Since $0 \notin \mathcal{B}_1 \cup \mathcal{B}_2$, we have $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$. Let $v \in V$. Then v has the form

$$a_1u_1 + \ldots + a_nu_n + b_1v_1 + \ldots + b_mv_m$$

for $u_1, \ldots, u_n \in \mathcal{B}_1$ and $v_1, \ldots, v_m \in \mathcal{B}_2$ which implies $v \in \langle \mathcal{B}_1 \cup \mathcal{B}_2 \rangle$ and thus $\mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for V by Theorem 1.6.1.

Theorem 1.7.6. Let S and T be subspaces of a vector space V. Then

$$\dim(S) + \dim(T) = \dim(S + T) + \dim(S \cap T).$$

In particular, if T is any complement of S in V, then

$$\dim(S) + \dim(T) = \dim(V) = \dim(S \oplus T).$$

Proof. Suppose that $\mathcal{B} = \{v_i \mid i \in I\}$ is a basis for $S \cap T$. Extend this to a basis $\mathcal{A} \cup \mathcal{B}$ for S and to a basis $\mathcal{B} \cup \mathcal{C}$ for T, where $\mathcal{A} = \{u_j \mid j \in J\}$ and $\mathcal{C} = \{w_k \mid k \in K\}$, $\mathcal{A} \cap \mathcal{B} = \emptyset$ and $\mathcal{C} \cap \mathcal{B} = \emptyset$.

Claim: $A \cup B \cup C$ is a basis for S + T.

Clearly, $\langle \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \rangle = S + T$. It remains to show that the set $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ is L.I. To see this, suppose to the contrary that

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$$

where $v_i \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ and $\alpha_i \neq 0$ for all i. Then there must be vectors $v_i \in \mathcal{A} \cap \mathcal{C}$ since $\mathcal{A} \cup \mathcal{B}$ and $\mathcal{B} \cup \mathcal{C}$ are L.I. Now, isolating the terms involving the vectors from \mathcal{A} , say v_1, \ldots, v_k without loss of generality, on one side of the equality shows that there is a nonzero vector in $x \in \mathcal{A} \cap \langle \mathcal{B} \cup \mathcal{C} \rangle$.

That is,

$$x = \underbrace{a_1 v_1 + \ldots + a_k v_k}_{\in \operatorname{span}(A)} = \underbrace{a_{k+1} v_{k+1} + \ldots + a_n v_n}_{\in \operatorname{span}(B \cup C)}$$

$$\Rightarrow x \in \operatorname{span}(A) \cap \operatorname{span}(B \cup C) \subset S \cap T = \langle B \rangle \quad (\operatorname{span}(A) \subset S)$$

$$\Rightarrow x \in \langle A \rangle \cap \langle B \rangle = \{0\}$$

$$\Rightarrow x = 0, \text{ a contradiction.}$$

Hence, $A \cup B \cup C$ is L.I and a basis for S + T. Now,

$$\dim(S) + \dim(T) = |\mathcal{A} \cup \mathcal{B}| + |\mathcal{B} \cup \mathcal{C}|$$

$$= |\mathcal{A}| + |\mathcal{B}| + |\mathcal{B}| + |\mathcal{C}|$$

$$= |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + \dim(S \cap T)$$

$$= \dim(S + T) + \dim(S \cap T),$$

as desired.

Chapter 2

Linear Transformations

2.1 Linear Transformations

Roughly speaking, a linear transformation is a function from one vector space to another that preserves the vector space operations.

Definition 2.1.1. Let V and W be vector spaces over a field F. A function $\tau: V \to W$ is a *linear transformation* (L,T) if

$$\tau(u+v) = \tau(u) + \tau(v)$$
 and $\tau(ru) = r\tau(u)$

for all scalars $r \in F$ and vectors $u, v \in V$. The set of all linear transformations from $V \to W$ is denoted by $\mathcal{L}(V, W)$.

- A L.T from V to V is called a *linear operator* on V. The set of all linear operators on V is denoted by $\mathcal{L}(V)$.
- A linear operator on a real vector space is called a *real operator* and a linear operator on a complex vector space is called a *complex operator*.
- A L.T from V to the base field F (thought of as a vector space over itself) is called a *linear functional* on V. The set of all linear functions on V is denoted by V^* and called the *dual space* of V.

Definition 2.1.2. The following terms are also employed:

- homomorphism for L.T denoted also by Hom(V, W);
- endomorphism for L. operator denoted also by End(V);
- monomorphism (embedding) for injective L.T;
- epimorphism for surjective L.T;

- isomorphism (invertible L.T) for bijective L.T $\tau \in \mathcal{L}(V, W)$. In this case, we write $V \cong W$ to say that V and W are isomorphic. The set of all linear isomorphisms from V to W is denoted GL(V, W).
- automorphism for bijective L. operator. The set of all automorphisms of V is denoted $\operatorname{Auto}(V)$ or $\operatorname{GL}(V)$.

Example 2.1.3.

- \odot The derivative $D: V \to V$ is a linear operator on the vector space V of all infinitely differentiable functions on \mathbb{R} .
- \odot Let $V = \mathbb{R}^2$ and let $W = \mathbb{R}$. Define $L: V \to W$ by f(v, w) = vw. Is L a L.T?
- \odot The integral operator $\tau: F[x] \to F[x]$ defined by

$$\tau(f) = \int_0^x f(t)dt$$

is a linear operator on F[x].

- \odot Let $V = \mathbb{R}^2$ and let $W = \mathbb{R}^3$. Define $L: V \to W$ by L(v, w) = (v, w v, w). Is L a L.T?
- \odot Let A be an $m \times n$ matrix over F. The function

$$\tau_A: F^n \to F^m,$$

$$v \mapsto Av,$$

where all vectors are written as column vectors, is a L.T from $F^n \to F^m$.

Note:

- \bigcirc The set $\mathcal{L}(V,W)$ is a vector space in its own right.
- \odot The identity transformation, $I_V: V \to V$, given by $I_V(x) = x$ for all $x \in V$. Clearly, since $I_V(av + bu) = av + bu = aI_V(u) + bI_V(v)$, I_V is L.T.
- \bigcirc The zero transformation, $\tau_0: V \to W$, given by $\tau_0(x) = 0$ for all $x \in V$, is a L.T.
- \bigcirc If $\tau \in \mathcal{L}(V)$ such that $\tau^2 = \tau$, we call τ an idempotent operator.

2.2 Basic properties of Linear Transformations

In the following we collect a few facts about linear transformations:

Theorem 2.2.1. Let τ be a L.T from a vector space V into a vector space W. Then

- i) $\tau(0) = 0$.
- ii) $\tau(-v) = -\tau(v)$ for all $v \in V$.
- iii) $\tau(u-v) = \tau(u) \tau(v)$ for all $u, v \in V$.
- iii) $\tau\left(\sum_{k=1}^n a_k v_k\right) = \sum_{k=1}^n a_k \tau(v_k) \text{ for all } v_1, \dots, v_k \in V.$

Theorem 2.2.2. Let V and W be vector spaces over over a field F and let $\mathcal{B} = \{v_i \mid i \in I\}$ is a basis for V. Then for any $\tau \in \mathcal{L}(V, W)$, we have $\operatorname{im}(\tau) = \langle \tau(\mathcal{B}) \rangle$.

Theorem 2.2.3.

- a) The set $\mathcal{L}(V, W)$ is a vector space under ordinary addition of functions and scalar multiplication of functions by elements of F.
- b) If $\sigma \in \mathcal{L}(U, V)$ and $\tau \in \mathcal{L}(V, W)$, then the composition $\tau \sigma$ is in $\mathcal{L}(U, W)$.
- c) If $\tau \in \mathcal{L}(V, W)$ is bijective, then $\tau^{-1} \in \mathcal{L}(W, V)$.

Proof. b) Since for all scalars $r, s \in F$ and vectors $u, v \in U$

$$\tau\sigma(ru + sv) = \tau(r\sigma(u) + s\sigma(v)) \qquad (\sigma \in \mathcal{L}(U, V))$$
$$= r(\tau\sigma(u)) + s(\tau\sigma(v)) \qquad (\tau \in \mathcal{L}(V, W))$$
$$\Rightarrow \tau\sigma \in \mathcal{L}(U, W).$$

c) Let $\tau: V \to W$ be a bijective L.T. Then $\tau^{-1}: W \to V$ is a well-defined function and since any two vectors w_1 and w_2 in W have the form $w_1 = \tau v_1$ and $w_2 = \tau v_2$, we have

$$\tau^{-1}(rw_1 + sw_2) = \tau^{-1}(r\tau v_1 + s\tau v_2)$$

$$= \tau^{-1}(\tau(rv_1 + sv_2))$$

$$= rv_1 + sv_2$$

$$= r\tau^{-1}(w_1) + s\tau^{-1}(w_2)$$

$$\Rightarrow \tau^{-1} \in \mathcal{L}(V, W).$$

One of the easiest ways to define a L.T is to give its values on a basis.

Theorem 2.2.4. Let V and W be vector spaces and let $\mathcal{B} = \{v_i \mid i \in I\}$ be a basis for V. Then we can define a L.T $\tau \in \mathcal{L}(V,W)$ by specifying the values of $\tau(v_i)$ arbitrarily for all $v_i \in \mathcal{B}$ and extending τ to V by linearity, that is,

$$\tau(a_1v_1 + \ldots + a_nv_n) = a_1\tau(v_1) + \ldots + a_n\tau(v_n).$$

This process defines a unique L.T, that is, if $\tau, \sigma \in \mathcal{L}(V, W)$ satisfying $\tau(v_i) = \sigma(v_i)$ for all $v_i \in \mathcal{B}$, then $\tau = \sigma$.

Note that if $\tau \in \mathcal{L}(V, W)$ and if S is a subspace of V, then the restriction $\tau | S$ of τ to S is a L.T from S to W.

2.3 The Kernel and Image of a L.T

Definition 2.3.1. Let $\tau \in \mathcal{L}(V, W)$.

• The subspace

$$\ker(\tau) = \{ v \in V \mid \tau(v) = 0 \}$$

is called the kernel of τ .

• The subspace

$$im(\tau) = \{ \tau(v) \in W \mid v \in V \}$$

is called the *image* of τ .

- \odot The dimension of ker(τ) is called the *nullity* of τ and is denoted by null(τ).
- \odot The dimension of im(τ) is called the rank of τ and is denoted by $\text{rk}(\tau)$.

Remark and Exercise 2.3.2.

- $\ker(\tau)$ is a subspace of V.
- $\operatorname{im}(\tau)$ is a subspace of W.

Theorem 2.3.3. Let $\tau \in \mathcal{L}(V, W)$. Then

- 1) τ is surjective if and only if $\operatorname{im}(\tau) = W$.
- 2) τ is injective if and only if $\ker(\tau) = \{0\}$.

Proof. 1) is clear. 2) Observe that,

$$\tau(v) = \tau(u) \Leftrightarrow \tau(v - u) = 0 \Leftrightarrow u - v \in \ker(\tau) = \{0\}$$

which implies u = v and, hence, τ is injective. Conversely, suppose τ is injective and $u \in \ker(\tau)$. Then $\tau(u) = 0 = \tau(0)$ and, hence, u = 0.

Theorem 2.3.4. Let $\tau \in \mathcal{L}(V, W)$ be an isomorphism. Let $S \subset V$. Then

- a) S spans V if and only if $\tau(S) = \{\tau(u) \mid u \in S\}$ spans W.
- b) S is L.I in V if and only if $\tau(S)$ is L.I in W.
- c) S is a basis for V if and only if $\tau(S)$ is a basis for W.

Proof. a)
$$V = \langle S \rangle \Leftrightarrow W = \operatorname{im}(\tau) = \tau(\langle S \rangle) = \langle \tau(S) \rangle$$
 (since $\tau \in \operatorname{GL}(V, W)$).

b) By given S is L.I. For any $s_1, \ldots, s_n \in S$, we have

$$\sum_{i=1}^{n} a_i s_i = 0 \Leftrightarrow a_i = 0 \text{ for all } i,$$

which implies

$$\tau\left(\sum_{i=1}^{n} a_{i} s_{i}\right) = \sum_{i=1}^{n} a_{i} \tau(s_{i}) = 0 = \tau(0)$$

$$\Rightarrow \sum_{i=1}^{n} a_{i} s_{i} = 0 \quad (\tau \in GL(V, W))$$

$$\Rightarrow a_{1} = \dots = a_{n} = 0 \quad (S \text{ is L.I })$$

$$\Rightarrow \tau(S) \text{ is L.I } \quad (\text{ since this is true for all } s_{i} \in S).$$

Conversely, if $\tau(S)$ is L.I we have for any $\tau(s_1), \ldots, \tau(s_n) \in \tau(S)$

$$0 = \sum_{i=1}^{n} a_i \tau(s_i) = \tau \left(\sum_{i=1}^{n} a_i s_i\right) = \tau(0)$$

$$\Rightarrow \sum_{i=1}^{n} a_i s_i = 0 \quad (\tau \in GL(V, W))$$

$$\Rightarrow a_1 = \dots = a_n = 0 \quad (\tau(S) \text{ is L.I.})$$

$$\Rightarrow S \text{ is L.I.}$$

c) S is a basis for V iff, by a) and b), $\tau(S)$ is L.I in W and $W = \langle \tau(S) \rangle$ which implies $\tau(S)$ is a basis for W.

Isomorphisms Preserve Bases

An isomorphism can be characterized as a L.T $\tau: V \to W$ that maps a basis for V to a basis for W.

Theorem 2.3.5. A L. $T \tau \in \mathcal{L}(V, W)$ is an isomorphism if and only if there is a basis \mathcal{B} for V for which $\tau(\mathcal{B})$ is a basis for W. In this case, τ maps any basis of V to a basis of W.

Proof. $\tau \in GL(V, W) \Rightarrow \tau$ is bijective. Thus by Theorem 2.2.2 $\tau(\mathcal{B})$ is a basis for W. Conversely, if $\tau(\mathcal{B})$ is a basis for W, then for all $v \in V$, there exist unique elements $a_1, \ldots, a_n \in F$ and u_1, \ldots, u_n such that $u = a_1u_1 + \ldots + a_nu_n$. Therefore,

$$0 = \tau(u) = a_1 \tau(u_1) + \ldots + a_n \tau(u_n)$$

$$\Rightarrow a_1 = \ldots = a_n = 0$$

$$\Rightarrow \ker(\tau) = \{0\}$$

$$\Rightarrow \tau \text{ is injective.}$$

Since $W = \langle \tau(\mathcal{B}) \rangle$, we have for all $w \in W$ there exist unique elements $a_1, \ldots, a_n \in F$ such that

$$w = a_1 \tau(u_1) + \ldots + a_n \tau(u_n) = \tau(a_1 u_1 + \ldots + a_n u_n).$$

So there exists $u = a_1u_1 + \ldots + a_nu_n \in V$ such that $w = \tau(u) \in \tau(V) = \operatorname{im}(\tau)$ which implies $W \subset \operatorname{im}(\tau)$. Clearly, $\operatorname{im}(\tau) \subset W$ and, hence, τ is surjective. Thus τ is bijective.

Isomorphisms Preserve Dimension

The following theorem says that, upto isomorphism, there is only one vector space of any given dimension over a given field.

Theorem 2.3.6.

- (i) Let V and W be vector spaces over F. Then $V \cong W$ if and only if $\dim(V) = \dim(W)$.
- (ii) If n is a natural number, then any n-dimensional vector space over F is isomorphic to F^n .

Proof. (i) $V \cong W \Rightarrow \exists \tau \in GL(V, W)$. Thus \mathcal{B} is a basis for V implies $\tau(\mathcal{B})$ is a basis for W and $\dim(V) = |\mathcal{B}| = |\tau(\mathcal{B})| = \dim(W)$. Conversely, if $\dim(V) = |\mathcal{B}_1| = |\mathcal{B}_2| = \dim(W)$, where \mathcal{B}_1 (resp. \mathcal{B}_2) is a basis for V (resp. W), then $\exists \tau \in GL(\mathcal{B}_1, \mathcal{B}_2)$.

Extending τ to V by linearity defines a unique $\tau \in \mathcal{L}(V, W)$ by Theorem 2.2.4 and τ is an isomorphism because it is surjective and injective, that is, $\operatorname{im}(\tau) = W$ and $\operatorname{ker}(\tau) = \{0\}$.

(ii) Clear by (i).
$$\Box$$

2.4 The Rank-Nullity Theorem

Lemma 2.4.1. If V and W are vector spaces over a field F and $\tau \in \mathcal{L}(V, W)$, then any complement of the kernel τ is isomorphic to the range of τ , that is,

$$V = \ker(\tau) \oplus \ker(\tau)^c \Rightarrow \ker(\tau)^c \cong \operatorname{im}(\tau)$$

where $\ker(\tau)^c$ is any complement of $\ker(\tau)$.

Proof. $V = \ker(\tau) \oplus \ker(\tau)^c \Rightarrow \dim(V) = \dim(\ker(\tau)) + \dim(\ker(\tau)^c)$. Let τ^c be the restriction of τ to $\ker(\tau)^c$. That is,

$$\tau^c : \ker(\tau)^c \to \operatorname{im}(\tau).$$

We claim that the map τ^c is bijective.

To see this, note that the map τ^c is injective since

$$\ker(\tau^c) = \ker(\tau) \cap \ker(\tau)^c = \{0\}.$$

Clearly, $\operatorname{im}(\tau^c) \subset \operatorname{im}(\tau)$. For the reverse inclusion, if $\tau(v) \in \operatorname{im}(\tau)$, then since v = u + w for $u \in \ker(\tau)$ and $w \in \ker(\tau)^c$, we have

$$\tau(v) = \tau(u) + \tau(w) = \tau(w) = \tau^{c}(w) \in \operatorname{im}(\tau^{c}).$$

Thus $\operatorname{im}(\tau^c) = \operatorname{im}(\tau)$ which implies

$$\tau^c : \ker(\tau)^c \to \operatorname{im}(\tau)$$

is an isomorphism.

Theorem 2.4.2 (Rank-Nullity Theorem). Let V and W be vector spaces over a field F and let $\tau \in \mathcal{L}(V, W)$. Then

$$\dim(\ker(\tau)) + \dim(\operatorname{im}(\tau)) = \dim(V)$$

or in other notation

$$rk(\tau) + null(\tau) = dim(V)$$

Proof.

$$\dim(V) = \dim(\ker(\tau)) + \dim(\ker(\tau)^c)$$

$$= \dim(\ker(\tau)) + \dim(\operatorname{im}(\tau)) \text{ (Lemma 2.4.1)}$$

$$= \operatorname{null}(\tau) + \operatorname{rk}(\tau)$$

which completes the proof.

Corollary 2.4.3. Let V and W be vector spaces over a field F and $\tau \in \mathcal{L}(V, W)$. If $\dim(V) = \dim(W)$, then the following are equivalent:

- i) τ is injective.
- ii) τ is surjective.
- iii) $rk(\tau) = \dim(V)$.

Proof. By the Rank-Nullity Theorem, $rank(\tau) + null(\tau) = dim(V)$ and , we have

$$\tau \text{ is 1-1} \begin{array}{l} Thm \ \textbf{2.3.3} \\ \Leftrightarrow \\ \text{R-N Thm} \\ \Leftrightarrow \\ \dim(\operatorname{im}(\tau)) = \operatorname{rk}(\tau) = \dim(V) \\ \Leftrightarrow \operatorname{im}(\tau) = W \\ \Leftrightarrow \tau \text{ is onto which completes the proof.} \end{array}$$