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Advanced Linear Algebra Worksheet I

1. Let V be a vector space and W ⊆ V be a subspace. Define a relation ∼W on V as
follows:

v1 ∼W v2 if and only if v1 − v2 ∈ W.

Show that ∼W is an equivalence relation on V . We write the equivalence classes
as

[v1] = {v2 ∈ V | v1 − v2 ∈ W} = v1 +W.

Set V/W = {v + W | v ∈ V }. Addition and scalar multiplication on V/W are
defined as follows. Let v1, v2 ∈ V and c ∈ F . Define

(v1 +W ) + (v2 +W ) = (v1 + v2) +W ;

c(v1 +W ) = cv1 +W.

Show that V/W is an F -vector space.

2. Let V be an F -vector space of dimension n. Let τ ∈ L(V ) such that τ 2 = 0.
Prove that the image of τ is contained in the kernel of τ and hence the dimension
of the image of τ is at most n

2
.
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Chapter 1

Vector Spaces

1.1 Vector Spaces

Definition 1.1.1. Let F be a field. A vector space over F is a nonempty set V together

with two operations:

◦ addition: assigns to each pair (u, v) ∈ V × V a vector u+ v ∈ V .

◦ scalar multiplication: assigns to each pair (r, u) ∈ F × V a vector ru in V .

Furthermore, the following properties must be satisfied:

• Associativity of addition: For all vectors u, v, w ∈ V , u+ (v + w) = (u+ v) + w.

• Commutativity of addition: For all vectors u, v ∈ V , u+ v = v + u.

• Existence of zero: There is a zero vector 0 ∈ V with the property that 0 + u =

u+ 0 = u for all vectors u ∈ V .

• Existence of additive inverses : For each vector u ∈ V , there is a vector in V ,

denoted by −u, with the property that u+ (−u) = (−u) + u = 0.

• Properties of scalar multiplication: For all scalars a, b ∈ F and for all vectors

u, v ∈ V ,

a(u+ v) = au+ av

(a+ b)u = au+ bu

(ab)u = a(bu)

1u = u

In the above definition
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◦ Elements of F (resp. V ) are referred to as scalars (resp. vectors).

◦ The first four properties are equivalent to (V,+) is an abelian group.

◦ V is sometimes called an F-space.

◦ If F = R (resp. C), then V is a real (resp. complex ) vector space.

1.2 Examples of a vector space

1) Let F be a field. The set VF of all functions from F to F is a vector space over F ,
under the operations of ordinary addition and scalar multiplication of functions:

(f + g)(x) = f(x) + g(x), and (af)(x) = a(f(x)).

2) The set Mm×n(F ) of all m× n matrices with entries in a field F is a vector space
over F , under the operations of matrix addition and scalar multiplication.

1.3 Subspaces, Linear combinations and Generators

Most algebraic structures contain substructures.

Definition 1.3.1. A subspace of a vector space V is a subset S of V that is a vector

space in its own right under the operations obtained by restricting the operations of V

to S. To indicate that S is a subspace of V , we use the notation S ≤ V . If S is a

subspace of V but S 6= V , we say that S is a proper subspace of V and it is denoted by

S < V . The zero subspace of V is {0}.

Definition 1.3.2. Let S be a nonempty subset of a vector space V . A linear combination

(L.C) of vectors in S is an expression of the form

a1v1 + . . .+ anvn

where v1 . . . vn ∈ S and a1, . . . , an ∈ F . The scalars ai are called the coefficients of the

linear combination. A L.C is trivial if every coefficient ai is zero. Otherwise, it is non

trivial.

Theorem 1.3.3. A non-empty subset S of a vector space V is a subspace of V if and

only if S is closed under addition and scalar multiplication or equivalently, S is closed

under linear combinations, that is,

a, b ∈ F, u, v ∈ S =⇒ au+ bv ∈ S.
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Example 1.3.4. Consider the vector space V (n, 2) of all binary n-tuples, that is, n-

tuples of 0’s and 1’s. The weightW(v) of a vector v ∈ V (n, 2) is the number of non-zero

coordinates in v. Let En be the set of all vectors in V of even weight. Then En ≤ V (n, 2).

Proof. For vectors u, v ∈ V (n, 2), show that

W(u+ v) =W(u) +W(v)− 2W(u ∩ v) (1.1)

where u ∩ v is the vector in V (n, 2) whose ith component is the product of the ith

components of u and v, that is, (u ∩ v)i = ui · vi. Let u and v be elements of En. Then

by definition W(u) and W(v) are even which by (1.1) implies W(u+ v) is even, that is,

u+ v ∈ En. Let a ∈ F2 and let u ∈ En. Clearly, W(au) is even which implies au ∈ En.

Thus En ≤ V (n, 2), known as the even weight subspace of V (n, 2).

Definition 1.3.5. The subspace spanned (or generated) by a nonempty set S of vectors

in V is the set of all linear combinations of vectors from S:

〈S〉 = Span(S) =

{
n∑

i=1

rivi

∣∣∣∣ ri ∈ F, vi ∈ S
}
.

When S = {v1, . . . , vn} is a finite set, we use the notation 〈v1, . . . , vn〉 or span(v1, . . . , vn).

A set S of vectors in V is said to be span V , or generates V , if V = Span(S).

Any superset of a spanning set is also a spanning set and all vector spaces have
spanning set since V spans itself.

1.4 Linear Dependence and Independence of Vectors

Definition 1.4.1. Let V be a vector space. A nonempty set S of vectors in V is linearly

independent (L.I) if for any distinct vectors s1, . . . , sn in S

a1s1 + . . .+ ansn = 0⇒ ai = 0 for all i.

In other words, S is L.I if the only L.C of vectors from S that is equal to 0 is the trivial

L.C, all of whose coefficients are 0. If S is not L.I, it is said to be linearly dependent

(LD).

A L.I set of vectors cannot contain the zero vector, since 1· 0 = 0 violates the condition
of linear independence.
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Definition 1.4.2. Let S be a nonempty set of vectors in V . To say that a nonzero vector

v ∈ V is an essentially unique L.C of the vectors in S is to say that, up to the order of

terms, there is one and only one way to express v as a L.C v =
∑n

i=1 aisi where the

si’s are distinct vectors in S and the coefficients ai are nonzero. More explicitly, v 6= 0

is an essentially unique L.C of vectors in S if v ∈ 〈S〉 and if whenever

v = a1s1 + . . .+ ansn and v = b1t1 + . . .+ bmtm

where the si’s are distinct and ti’s are distinct and all coefficients are nonzero, then

m = n and after a reindexing of the biti’s if necessary, we have ai = bi and si = ti for all

i = 1, . . . , n.

Theorem 1.4.3. Let S 6= {0} be a nonempty set of vectors in V . The following are

equivalent:

(a) S is L.I.

(b) Every nonzero vector v ∈ span(S) is an essentially unique L.C of the vectors in S.

(c) No vector in S is a L.C of other vectors in S.

Proof. (a) ⇒ (b) Suppose that

0 6= v = a1s1 + . . .+ ansn and v = b1t1 + . . .+ bmtm

where the si’s are distinct and ti’s are distinct and the coefficients are nonzero. By

subtracting and grouping s’s and t’s that are equal, we can write

0 = (ai1 − bi1) si1 + . . .+ (aik − bi1) sik
+ aik+1

sik+1
+ . . .+ ainsin − bik+1

tik+1
− . . .− bimtim

(a) ⇒ m = n = k and aiu = biu and siu = tiu for all u = 1, . . . , k.

(b) ⇒ (c) and (c) ⇒ (a) is left as an exercise.

1.5 Direct sum and direct product of subspaces

Definition 1.5.1. Let V1, . . . , Vn be vector spaces over a field F . The external direct

sum of V1, . . . , Vn, denoted by V1 � . . . � Vn is the vector space V whose elements are

ordered n-tuples:

V = {(v1, . . . , vn) | vi ∈ Vi, i = 1, . . . , n}
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with componentwise operations

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) and

r(u1, . . . , un) = (ru1, . . . , run) for all r ∈ F.

Example 1.5.2. The vector space F n is the external direct sum of n copies of F , that

is, F n = F � . . .� F where there are n summands on the right hand side.

The above construction can be generalized to any collection of vector spaces by gen-
eralizing the idea that an ordered n-tuple (v1, . . . , vn) is just a function

f : {1, . . . , n} →
⋃

Vi,

i 7→ f(i) .

Definition 1.5.3. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

direct product of F is the vector space

∏
i∈I

Vi =

{
f : I →

⋃
Vi

∣∣∣∣ f(i) ∈ Vi
}

thought of as a subspace of the vector space of all functions from I to
⋃
Vi.

Note that∏
i∈I

Vi = {v = (vi)i∈I | vi ∈ Vi} =

{
f : I →

⋃
Vi

∣∣∣∣ f(i) ∈ Vi
}
.

If we define addition and scalar multiplication by

v + w =
(
f : I →

⋃
Vi

)
+
(
g : I →

⋃
Vi

)
=
(
f + g : I →

⋃
Vi

)
and

av = a
(
f : I →

⋃
Vi

)
=
(
af : I →

⋃
Vi

)
or by

(vi)i∈I + (wi)i∈I = (vi + wi)i∈I and

a(vi)i∈I = (avi)i∈I

Then the direct product
∏

i∈I Vi is a vector space over F .
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Definition 1.5.4. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

support of a function f : I →
⋃
Vi is the set

support(f) = {i ∈ I | f(i) 6= 0}.

We say that f has finite support if f(i) = 0 for all but a finite number of i ∈ I.

Definition 1.5.5. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

external direct sum of the family F is the vector space

ext⊕
i∈I

Vi =
{
f : I →

⋃
Vi
∣∣ f(i) ∈ Vi, f has finite support

}
.

thought of as a subspace of the vector space of all functions from I to
⋃
Vi.

If Vi = V for all i ∈ I,

• we denote the set of all functions from I to V by V I , and

• we denote the set of all functions in V I that have finite support by
(
V I
)
0
.

In this case, we have ∏
i∈I

V = V I and
ext⊕
i∈I

V =
(
V I
)
0
.

Definition 1.5.6. A vector space V is the internal direct sum of a family F = {Si | i ∈
I} of subspaces of V , written

V =
⊕
F or V =

⊕
i∈I

Si

if the following hold:

(1) (Join of the family) V is the sum (join) of the family V =
∑

i∈I Si

(2) (Independence of the family) For each i ∈ I,

Si

⋂(∑
j 6=i

Sj

)
= {0}.

In this case,

• each Si is called a direct summand of V .

• if F = {S1, . . . , Sn} is a finite family, the direct sum is often written V = S1 ⊕
. . .⊕ Sn.
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• if V = S ⊕ T , then T is called a complement of S in V .

If S and T are subspaces of V , then we may always say that the sum S + T exists.
However, to say that the direct sum of S and T exists or to write S⊕T is to imply that
S ∩T = {0}. Thus, while the sum of two subspaces always exists, the direct sum of two
subspaces does not always exist. Similar statements apply to families of subspaces of V .

Theorem 1.5.7. Let F = {Vi | i ∈ I} be any family of vector spaces over F . The

following are equivalent:

(1) ( Independence of the family) For each i ∈ I,

Si

⋂(∑
j 6=i

Sj

)
= {0}.

(2) ( Uniqueness of expression for 0) The zero vector cannot be written as a sum of

nonzero vectors from distinct subspaces of F .

(3) ( Uniqueness of expression) Every nonzero vector v ∈ V has a unique, except for

order of terms, expression as a sum

v = s1 + . . .+ sn

of nonzero vectors from distinct subspaces in F .

Hence, a sum

V =
∑
i∈I

Si

is direct if and only if any one of (1)-(3) holds.

Proof. (1) ⇒ (2) Suppose that (2) fails, that is,

0 = sj1 + . . .+ sjn

where the nonzero vectors sji ’s are from distinct subspaces of Sji . Then n > 1 and,

hence,

−sj1 = sj2 . . .+ sjn

which violates (1).

(2) ⇒ (3) If (2) holds and

v = s1 + . . .+ sn = t1 + . . .+ tn
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where the terms are nonzero and both the si’s and the ti’s belong to distinct subspaces

in F . Then

0 = s1 + . . .+ sn − t1 − . . .− tn.

Now, by collecting terms from the same subspaces, we may write

0 = (si1 − ti1) + . . .+ (sik − tik)

+ sik+1
+ . . .+ sin − tik+1

− . . .− tim .

Then (2) implies that m = n = k and siu = tiu for all u = 1, . . . , k.

(3) ⇒ (1)

0 6= v ∈ Si

⋂(∑
j 6=i

Sj

)
⇒ v = si ∈ Si and si = sj1 + . . .+ sjn

where sjk ∈ Sjk are nonzero which violates (3).

Example 1.5.8. Let A = {(x, 0) ∈ R2 | x ∈ R} and let B = {(0, y) ∈ R2 | y ∈ R}. Then

R2 = A⊕B since A∩B = {0} and R2 = A+B. Any element (x, y) of R2 can be written

as

(x, y) = (x, 0) + (0, y).

Proposition 1.5.9. Suppose U and W are subspaces of the vector space V over a field

F . Consider the map

α : U ⊕W → V

defined by α(u,w) = u+ w. Then

• α is injective if and only if U ∩W = {0}.

• α is surjective if and only if U ∪W spans V .

Example 1.5.10. Let A = {(x, 0) ∈ R2 | x ∈ R} and let C = {(y, y) ∈ R2 | y ∈ R}.
Then R2 = A⊕ C. To see this, note that the map

α : A⊕B → R2

(x, y) 7→ x+ y

is injective since A ∩ C = {0}. Moreover, α is a surjective map since any element (x, y)

of R2 can be written as

(x, y) = (x− y, 0)︸ ︷︷ ︸
∈A

+ (y, y)︸ ︷︷ ︸
∈C

.

Thus, by the above proposition A ∪ C spans R2.
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Example 1.5.11. Let A ∈Mn be a matrix. Then A can be written in the form

A =
1

2
(A+ At) +

1

2
(A− At) = B + C (1.2)

where At is the transpose of A. Verify that B is symmetric and C is skew-symmetric.

Thus (1.2) is a decomposition of A as a sum of a symmetric matrix (At = A) and a

skew-symmetric matrix (At = −A).

Exercise 1.5.12. Show that the sets Sym and SkewSym of all symmetric and skew-

symmetric matrices in Mn are subspaces of Mn.

Thus, we have

Mn = Sym + SkewSym.

Furthermore, if S, S ′ ∈ Sym and T, T ′ ∈ SkewSym such that S + T = S ′ + T ′, then the

matrix

U = S − S ′ = T − T ′ ∈ Sym ∩ SkewSym.

Hence, provided that char(F ) 6= 2, we must have U = 0. Thus,

Mn = Sym⊕ SkewSym.

1.6 Bases of a Vector Space

Theorem and Definition 1.6.1. Let S be a set of vectors in V . The following are

equivalent:

(i) S is L.I and spans V .

(ii) Every nonzero vector v ∈ V is an essentially unique L.C of vectors in S.

(iii) S is a minimal spanning set, that is, S spans V but any proper subset of S does

not span V .

(iv) S is a maximal L.I set, that is, S is L.I but any proper superset of S is not L.I.

A set of vectors in V that satisfies any (and hence all) of these conditions is called a

basis for V .

Proof. (i) ←→ (ii) by Theorem 1.4.3.

(i) ⇒ (iii) By given S is L.I and a spanning set, V = span(S). Suppose that any

proper subset S ′ of S spans V . Let s ∈ S − S ′. Since s ∈ V , s is a L.C of the vectors in

S ′ which is a contradiction to the fact that S is L.I.



12 1. Vector Spaces

(iii) ⇒ (i) If S is a minimal spanning set, then it must be L.I. For if not, some vector

s ∈ S would be a L.C of the other vectors in S, S − {s}. Then S − {s} would be a

proper spanning subset of S which is not possible.

(i) ⇔ (iv): exercise

Example 1.6.2.

(1) Find a basis of the subspace of R3 given by

V =


xy
z

 ∈ R3

∣∣∣∣ x− 2y + 5z = 0

 .

Solution: Let v =

xy
z

 be any vector in V . Then

v =

xy
z

 =

2y − 5z

y

z

 =

2y

y

0

+

−5z

0

z


= y

2

1

0

+ z

−5

0

1

 , y, z ∈ R.

This shows that the set

{u, v} =


2

1

0

 ,

−5

0

1




spans V . It is easy to see that the set {u, v} is L.I. Thus it is a basis for the subspace

V of R3.

(2) The set S =

{(
1

2

)
,

(
1

−1

)}
is a basis of R2.

(3) The ith standard vector in F n is the vector ei that has 0’s in all coordinate positions

except the ith, where it has a 1. Thus,

e1 = (1, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1).

The set {e1, . . . , en} is called the standard basis for F n.
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Theorem 1.6.3. Let V be a nonzero vector space. Let I be a L.I set in V and let S be

a spanning set in V containing I. Then there is a basis B for V for which I ⊂ B ⊂ S.

In particular,

(1) Any vector space, except the zero space {0}, has a basis.

(2) Any L.I set in V is contained in a basis.

(3) Any spanning set in V contains a basis.

1.7 Dimension of a Vector Space

The following theorem says that if a vector space V has a finite spanning set S, then
the size of any linearly independent set cannot exceed the size of S.

Theorem 1.7.1. Let V be a vector space and assume that the vectors v1, . . . , vn are L.I

and the vectors s1, . . . , sm span V . Then n ≤ m.

Corollary 1.7.2. If V has a finite spanning set, then any two bases of V have the same

size.

Theorem 1.7.3. If V is a vector space, then any two bases for V have the same cardi-

nality.

Definition 1.7.4. A vector space V is finite-dimensional if it is the zero space or if it

has a finite basis. All other vector spaces are infinite-dimensional. The dimension of

the a non-zero vector space V is the cardinality of any basis for V .

(a) The dimension of the zero space is 0.

(b) If a vector space V has a basis of cardinality k, we say that V is k-dimensional
and write dim(V ) = k.

(c) If S is a subspace of V , then dim(S) ≤ dim(V ). If in addition dim(S) = dim(V ) <
∞, then S = V .

Theorem 1.7.5. Let V be a vector space.

1) If B is a basis for V and if B = B1 ∪ B2 and B1 ∩ B2 = ∅, then V = 〈B1〉 ⊕ 〈B2〉.

2) Let V = S ⊕ T . If B1 is a basis for S and B2 is a basis for T , then B1 ∩ B2 = ∅
and B = B1 ∪ B2 is a basis for V .
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Proof. 1) If B1 ∩ B2 = ∅ and B = B1 ∪ B2 is a basis for V , then 0 6∈ B1 ∪ B2. But,

if a nonzero vector v ∈ 〈B1〉 ∩ 〈B2〉, then B1 ∩ B2 6= ∅, a contradiction. Hence, {0} =

〈B1〉 ∩ 〈B2〉. Furthermore, since B1 ∪ B2 is a basis for V and for 〈B1〉 + 〈B2〉, we must

have V = 〈B1〉+ 〈B2〉. Thus, V = 〈B1〉 ⊕ 〈B2〉.
2) If V = S ⊕ T , then S ∩ T = {0}. Since 0 6∈ B1 ∪ B2, we have B1 ∩ B2 = ∅. Let

v ∈ V . Then v has the form

a1u1 + . . .+ anun + b1v1 + . . .+ bmvm

for u1, . . . , un ∈ B1 and v1, . . . , vm ∈ B2 which implies v ∈ 〈B1 ∪ B2〉 and thus B1 ∪ B2 is

a basis for V by Theorem 1.6.1.

Theorem 1.7.6. Let S and T be subspaces of a vector space V . Then

dim(S) + dim(T ) = dim(S + T ) + dim(S ∩ T ).

In particular, if T is any complement of S in V , then

dim(S) + dim(T ) = dim(V ) = dim(S ⊕ T ).

Proof. Suppose that B = {vi | i ∈ I} is a basis for S ∩ T . Extend this to a basis A ∪ B
for S and to a basis B ∪ C for T , where A = {uj | j ∈ J} and C = {wk | k ∈ K},
A ∩ B = ∅ and C ∩ B = ∅.

Claim: A ∪ B ∪ C is a basis for S + T .

Clearly, 〈A∪B ∪ C〉 = S + T . It remains to show that the set A∪B ∪C is L.I. To see

this, suppose to the contrary that

α1 v1 + . . .+ αn vn = 0

where vi ∈ A ∪ B ∪ C and αi 6= 0 for all i. Then there must be vectors vi ∈ A ∩ C since

A ∪ B and B ∪ C are L.I. Now, isolating the terms involving the vectors from A, say

v1, . . . , vk without loss of generality, on one side of the equality shows that there is a

nonzero vector in x ∈ A ∩ 〈B ∪ C〉.
That is,

x = a1v1 + . . .+ akvk︸ ︷︷ ︸
∈ span(A)

= ak+1vk+1 + . . .+ anvn︸ ︷︷ ︸
∈ span(B∪C)

⇒ x ∈ span(A) ∩ span(B ∪ C) ⊂ S ∩ T = 〈B〉 (span(A) ⊂ S)

⇒ x ∈ 〈A〉 ∩ 〈B〉 = {0}
⇒ x = 0, a contradiction.
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Hence, A ∪ B ∪ C is L.I and a basis for S + T . Now,

dim(S) + dim(T ) = |A ∪ B|+ |B ∪ C|
= |A|+ |B|+ |B|+ |C|
= |A|+ |B|+ |C|+ dim(S ∩ T )

= dim(S + T ) + dim(S ∩ T ),

as desired.





Chapter 2

Linear Transformations

2.1 Linear Transformations

Roughly speaking, a linear transformation is a function from one vector space to another
that preserves the vector space operations.

Definition 2.1.1. Let V and W be vector spaces over a field F . A function τ : V → W

is a linear transformation (L.T) if

τ(u+ v) = τ(u) + τ(v) and τ(ru) = rτ(u)

for all scalars r ∈ F and vectors u, v ∈ V . The set of all linear transformations from

V → W is denoted by L(V,W ).

◦ A L.T from V to V is called a linear operator on V . The set of all linear operators

on V is denoted by L(V ).

◦ A linear operator on a real vector space is called a real operator and a linear

operator on a complex vector space is called a complex operator.

◦ A L.T from V to the base field F (thought of as a vector space over itself) is called
a linear functional on V . The set of all linear functions on V is denoted by V ∗

and called the dual space of V .

Definition 2.1.2. The following terms are also employed:

• homomorphism for L.T denoted also by Hom(V,W );

• endomorphism for L. operator denoted also by End(V );

• monomorphism (embedding) for injective L.T;

• epimorphism for surjective L.T;

17



18 2. Linear Transformations

• isomorphism (invertible L.T) for bijective L.T τ ∈ L(V,W ). In this case,

we write V ∼= W to say that V and W are isomorphic. The set of all linear

isomorphisms from V to W is denoted GL(V,W ).

• automorphism for bijective L. operator. The set of all automorphisms of V is

denoted Auto(V ) or GL(V ).

Example 2.1.3.

} The derivative D : V → V is a linear operator on the vector space V of all infinitely

differentiable functions on R.

} Let V = R2 and let W = R. Define L : V → W by f(v, w) = vw. Is L a L.T?

} The integral operator τ : F [x]→ F [x] defined by

τ(f) =

∫ x

0

f(t)dt

is a linear operator on F [x].

} Let V = R2 and let W = R3. Define L : V → W by L(v, w) = (v, w − v, w). Is L

a L.T?

} Let A be an m× n matrix over F . The function

τA : F n → Fm,

v 7→ Av,

where all vectors are written as column vectors, is a L.T from F n → Fm.

Note:

� The set L(V,W ) is a vector space in its own right.

� The identity transformation, IV : V → V , given by IV (x) = x for all x ∈ V .
Clearly, since IV (av + bu) = av + bu = aIV (u) + bIV (v), IV is L.T.

� The zero transformation, τ0 : V → W , given by τ0(x) = 0 for all x ∈ V , is a L.T.

� If τ ∈ L(V ) such that τ 2 = τ , we call τ an idempotent operator.
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2.2 Basic properties of Linear Transformations

In the following we collect a few facts about linear transformations:

Theorem 2.2.1. Let τ be a L.T from a vector space V into a vector space W . Then

i) τ(0) = 0.

ii) τ(−v) = −τ(v) for all v ∈ V .

iii) τ(u− v) = τ(u)− τ(v) for all u, v ∈ V .

iii) τ (
∑n

k=1 akvk) =
∑n

k=1 akτ(vk) for all v1, . . . , vk ∈ V .

Theorem 2.2.2. Let V and W be vector spaces over over a field F and let B = {vi |
i ∈ I} is a basis for V . Then for any τ ∈ L(V,W ), we have im(τ) = 〈τ(B)〉.

Theorem 2.2.3.

a) The set L(V,W ) is a vector space under ordinary addition of functions and scalar

multiplication of functions by elements of F .

b) If σ ∈ L(U, V ) and τ ∈ L(V,W ), then the composition τσ is in L(U,W ).

c) If τ ∈ L(V,W ) is bijective, then τ−1 ∈ L(W,V ).

Proof. b) Since for all scalars r, s ∈ F and vectors u, v ∈ U

τσ(ru+ sv) = τ(rσ(u) + sσ(v)) (σ ∈ L(U, V ))

= r(τσ(u)) + s(τσ(v)) (τ ∈ L(V,W ))

⇒ τσ ∈ L(U,W ).

c) Let τ : V → W be a bijective L.T. Then τ−1 : W → V is a well-defined function

and since any two vectors w1 and w2 in W have the form w1 = τv1 and w2 = τv2, we

have

τ−1(rw1 + sw2) = τ−1(rτv1 + sτv2)

= τ−1(τ(rv1 + sv2))

= rv1 + sv2

= rτ−1(w1) + sτ−1(w2)

⇒ τ−1 ∈ L(V,W ) .
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One of the easiest ways to define a L.T is to give its values on a basis.

Theorem 2.2.4. Let V and W be vector spaces and let B = {vi | i ∈ I} be a basis for

V . Then we can define a L.T τ ∈ L(V,W ) by specifying the values of τ(vi) arbitrarily

for all vi ∈ B and extending τ to V by linearity, that is,

τ(a1v1 + . . .+ anvn) = a1τ(v1) + . . .+ anτ(vn).

This process defines a unique L.T, that is, if τ, σ ∈ L(V,W ) satisfying τ(vi) = σ(vi) for

all vi ∈ B, then τ = σ.

Note that if τ ∈ L(V,W ) and if S is a subspace of V , then the restriction τ |S of τ to
S is a L.T from S to W .

2.3 The Kernel and Image of a L.T

Definition 2.3.1. Let τ ∈ L(V,W ).

� The subspace

ker(τ) = {v ∈ V | τ(v) = 0}

is called the kernel of τ .

� The subspace

im(τ) = {τ(v) ∈ W | v ∈ V }

is called the image of τ .

� The dimension of ker(τ) is called the nullity of τ and is denoted by null(τ).

� The dimension of im(τ) is called the rank of τ and is denoted by rk(τ).

Remark and Exercise 2.3.2.

� ker(τ) is a subspace of V .

� im(τ) is a subspace of W .

Theorem 2.3.3. Let τ ∈ L(V,W ). Then

1) τ is surjective if and only if im(τ) = W .

2) τ is injective if and only if ker(τ) = {0}.
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Proof. 1) is clear. 2) Observe that,

τ(v) = τ(u)⇔ τ(v − u) = 0⇔ u− v ∈ ker(τ) = {0}

which implies u = v and, hence, τ is injective. Conversely, suppose τ is injective and

u ∈ ker(τ). Then τ(u) = 0 = τ(0) and, hence, u = 0.

Theorem 2.3.4. Let τ ∈ L(V,W ) be an isomorphism. Let S ⊂ V . Then

a) S spans V if and only if τ(S) = {τ(u) | u ∈ S} spans W .

b) S is L.I in V if and only if τ(S) is L.I in W .

c) S is a basis for V if and only if τ(S) is a basis for W .

Proof. a) V = 〈S〉 ⇔ W = im(τ) = τ(〈S〉) = 〈τ(S)〉 (since τ ∈ GL(V,W )).

b) By given S is L.I. For any s1, . . . , sn ∈ S, we have

n∑
i=1

aisi = 0⇔ ai = 0 for all i,

which implies

τ

(
n∑

i=1

aisi

)
=

n∑
i=1

aiτ(si) = 0 = τ(0)

⇒
n∑

i=1

aisi = 0 (τ ∈ GL(V,W ))

⇒ a1 = . . . = an = 0 (S is L.I )

⇒ τ(S) is L.I ( since this is true for all si ∈ S).

Conversely, if τ(S) is L.I we have for any τ(s1), . . . , τ(sn) ∈ τ(S)

0 =
n∑

i=1

aiτ(si) = τ

(
n∑

i=1

aisi

)
= τ(0)

⇒
n∑

i=1

aisi = 0 (τ ∈ GL(V,W ))

⇒ a1 = . . . = an = 0 (τ(S) is L.I )

⇒ S is L.I .

c) S is a basis for V iff, by a) and b), τ(S) is L.I in W and W = 〈τ(S)〉 which implies

τ(S) is a basis for W .
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Isomorphisms Preserve Bases

An isomorphism can be characterized as a L.T τ : V → W that maps a basis for V to a
basis for W .

Theorem 2.3.5. A L.T τ ∈ L(V,W ) is an isomorphism if and only if there is a basis

B for V for which τ(B) is a basis for W . In this case, τ maps any basis of V to a basis

of W .

Proof. τ ∈ GL(V,W ) ⇒ τ is bijective. Thus by Theorem 2.2.2 τ(B) is a basis for W .

Conversely, if τ(B) is a basis for W , then for all v ∈ V , there exist unique elements

a1, . . . , an ∈ F and u1, . . . , un such that u = a1u1 + . . .+ anun. Therefore,

0 = τ(u) = a1τ(u1) + . . .+ anτ(un)

⇒ a1 = . . . = an = 0

⇒ ker(τ) = {0}
⇒ τ is injective.

Since W = 〈τ(B)〉, we have for all w ∈ W there exist unique elements a1, . . . , an ∈ F
such that

w = a1τ(u1) + . . .+ anτ(un) = τ(a1u1 + . . .+ anun).

So there exists u = a1u1 + . . . + anun ∈ V such that w = τ(u) ∈ τ(V ) = im(τ)

which implies W ⊂ im(τ). Clearly, im(τ) ⊂ W and, hence, τ is surjective. Thus τ is

bijective.

Isomorphisms Preserve Dimension

The following theorem says that, upto isomorphism, there is only one vector space of
any given dimension over a given field.

Theorem 2.3.6.

(i) Let V and W be vector spaces over F . Then V ∼= W if and only if dim(V ) =

dim(W ).

(ii) If n is a natural number, then any n-dimensional vector space over F is isomorphic

to F n.

Proof. (i) V ∼= W ⇒ ∃τ ∈ GL(V,W ). Thus B is a basis for V implies τ(B) is a

basis for W and dim(V ) = |B| = |τ(B)| = dim(W ). Conversely, if dim(V ) = |B1| =

|B2| = dim(W ), where B1 (resp. B2) is a basis for V (resp. W ), then ∃τ ∈ GL(B1,B2).
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Extending τ to V by linearity defines a unique τ ∈ L(V,W ) by Theorem 2.2.4 and τ is an

isomorphism because it is surjective and injective, that is, im(τ) = W and ker(τ) = {0}.
(ii) Clear by (i).

2.4 The Rank-Nullity Theorem

Lemma 2.4.1. If V and W are vector spaces over a field F and τ ∈ L(V,W ), then any

complement of the kernel τ is isomorphic to the range of τ , that is,

V = ker(τ)⊕ ker(τ)c ⇒ ker(τ)c ∼= im(τ)

where ker(τ)c is any complement of ker(τ).

Proof. V = ker(τ) ⊕ ker(τ)c ⇒ dim(V ) = dim (ker(τ)) + dim (ker(τ)c). Let τ c be the

restriction of τ to ker(τ)c. That is,

τ c : ker(τ)c → im(τ).

We claim that the map τ c is bijective.

To see this, note that the map τ c is injective since

ker(τ c) = ker(τ) ∩ ker(τ)c = {0}.

Clearly, im(τ c) ⊂ im(τ). For the reverse inclusion, if τ(v) ∈ im(τ), then since v = u+w
for u ∈ ker(τ) and w ∈ ker(τ)c, we have

τ(v) = τ(u) + τ(w) = τ(w) = τ c(w) ∈ im(τ c).

Thus im(τ c) = im(τ) which implies

τ c : ker(τ)c → im(τ)

is an isomorphism.

Theorem 2.4.2 (Rank-Nullity Theorem). Let V and W be vector spaces over a field

F and let τ ∈ L(V,W ). Then

dim(ker(τ)) + dim(im(τ)) = dim(V)

or in other notation

rk(τ) + null(τ) = dim(V)
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Proof.

dim(V ) = dim(ker(τ)) + dim(ker(τ)c)

= dim(ker(τ)) + dim(im(τ)) (Lemma 2.4.1)

= null(τ) + rk(τ)

which completes the proof.

Corollary 2.4.3. Let V and W be vector spaces over a field F and τ ∈ L(V,W ). If

dim(V ) = dim(W ), then the following are equivalent:

i) τ is injective.

ii) τ is surjective.

iii) rk(τ) = dim(V ).

Proof. By the Rank-Nullity Theorem, rank(τ) + null(τ) = dim(V ) and , we have

τ is 1-1
Thm 2.3.3

⇔
ker(τ) = null(τ) = {0}

R-N Thm

⇔
dim(im(τ)) = rk(τ) = dim(V )

assu.

=
dim(V )

⇔ im(τ) = W

⇔ τ is onto which completes the proof.
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