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Chapter 1

Groups

1.1 Introduction

The fundamental notions of set, mapping, binary operation, and binary relation are
essential for the study of an algebraic system. An algebraic structure or algebraic system,
is a nonempty set in which at least one equivalence relation (equality) and one or more
binary operations are defined. The simplest structures occur when there is only one
binary operation, as in the case with the algebraic system known as group. The concept
of a group is of fundamental importance in the study of algebra. Ideally the goal in
studying groups is to classify all groups up to isomorphism, which in practice means
finding necessary and sufficient conditions for two groups to be isomorphic.

1.2 Semigroups, Monoids and Groups

Let G be a nonempty set. A binary operation on G is a function G × G −→ G. There
are several commonly used notations for the image of (a, b) under a binary operation:

◦ multiplicative notation: ab

◦ additive notation: a+ b

◦ a · b, a ∗ b etc.

For convenience we shall generally use the multiplicative notation throughout this chap-
ter and refer to ab as the product of a and b.

Definition 1.2.1.

i) A semigroup is a nonempty set G together with a binary operation on G which is

– associative: a(bc) = (ab)c for all a, b ∈ G;

ii) a monoid is a semigroup G which contains a

– two sided identity element e ∈ G such that ae = ea = a for all a ∈ G.
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2 1. Groups

iii) A group is a monoid G such that

– for every a ∈ G there exists a two sided inverse element a−1 ∈ G such that

a−1a = aa−1 = e.

iv) A semigroup G is said to be abelian or commutative if its binary operation is

commutative, that is, ab = ba for all a, b ∈ G.

Example 1.2.2.

1. Let G be the set of complex numbers given by G = {1, i,−1,−i}, where i =√
−1, and consider the operation of multiplication of complex numbers in G, see

Table 1.1.

× 1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i

i i −i −1 1

−i −i i 1 −1

Table 1.1

In this table, we see that:

• G is closed w.r.t. multiplication.

• Multiplication in G is associative, since multiplication has these properties in

the set of all complex numbers.

• 1 is the identity element, and that all elements have inverses. Thus, (G, ·) is

a group by definition.

2. It is easy to verify that each of the following set is a group:

(i) (Zn,+) where Zn = {0, . . . , n− 1} is the set of congruence modulo n.

(ii) G = {a, b, c, d} where (G, ·) is defined as in Table 1.2.

Definition 1.2.3. Let G be a group.

◦ The order of the group G is the cardinal number |G|.

◦ G is said to be finite (resp. infinite) if |G| is finite (resp. infinite).



1.2. Semigroups, Monoids and Groups 3

· e a b c

e e a b c

a a b c e

b b c e a

c c e a b

Table 1.2

Theorem 1.2.4. If G is a monoid, then the identity element e is unique. If G is a

group, then

(i) c ∈ G and cc = c⇒ c = e;

(ii) for all a, b, c ∈ G ab = ac ⇒ b = c and ba = ca ⇒ b = c (left and right

cancellation);

(iii) for each a ∈ G, the inverse element a−1 is unique;

(iv) for each a ∈ G, (a−1)
−1

= a;

(v) for a, b ∈ G, (ab)−1 = b−1a−1;

(vi) for a, b ∈ G, the equations ax = b and ya = b have unique solutions in G: x = a−1b

and y = ba−1.

Proof. (i) If e′ ∈ G is also a two-sided identity, then e = ee′ = e′.

cc = c⇒ c−1(cc) = c−1c

⇒ (c−1c)c = c−1c

⇒ ec = e

⇒ c = e.

(ii)

ab = ac⇒ a−1(ab) = a−1(ac)

⇒ (a−1a)b = (a−1a)c

⇒ eb = ec

⇒ b = c

Similarly, ba = ca⇒ b = c.
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(iii) Let b ∈ G be an inverse of a ∈ G. Then ba = e = a−1a which implies b = a−1 by

part (ii).

(iv) (
a−1
)−1

=
(
a−1
)−1

e

=
(
a−1
)−1

(a−1a)

=
((
a−1
)−1

a−1
)
a

= ea

= a.

(v)

(ab)(b−1a−1) = a(bb−1)a−1

= e

= (ab)(ab)−1

⇒ (ab)−1 = b−1a−1 by part (ii).

(vi) Since a(a−1b) = (aa−1)b = eb = b and (ba−1)a = b(a−1a) = be = b, x = a−1b and

y = ba−1 are solutions of ax = b and ya = b. Uniqueness ( Exercise!)

Proposition 1.2.5. Let G be a semigroup. Then G is a group if and only if the following

conditions hold:

i) there exists an element e ∈ G such that ea = a for all a ∈ G (left identity element)

ii) for each a ∈ G, there exists an element a−1 ∈ G such that a−1a = e (left inverse)

Proof. (⇒) If G is a group, then by Definition 1.2.1 both conditions i) and ii) hold.

(⇐) We show that e (resp. a−1) is a right identity (resp. inverse). To see this, if a ∈ G,

then by part ii)(
aa−1

) (
aa−1

)
= a

(
aa−1

)
a−1

= a
(
ea−1

)
= aa−1

⇒ aa−1 = e by Theorem 1.2.4 (i) which implies a−1

is a right inverse.

Moreover, since ae = a (a−1a) = (aa−1) a = ea = a for all a ∈ G, e is a right identity.

Thus, G is a group by Definition 1.2.1.
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Remark 1.2.6. An analogous result holds for ”right inverse” and ”right identity”.

Proposition 1.2.7. A semigroup G is a group if and only if, for any elements a and b

in G, the equations ax = b and ya = b have solutions in G.

Proof. (⇒) If G is a group, then we have a−1b and ba−1 are elements of G such that

a
(
a−1b

)
=
(
aa−1

)
b = eb = b,(

ba−1
)
a = b

(
a−1a

)
= be = b.

Thus the equations ax = b and ya = b have solutions in G.

(⇐) Suppose that these equations have solutions in G. Let a be an arbitrary element

in G. Then, there exists e ∈ G such that ae = a since ax = a is solvable in G. For all

elements b ∈ G, we show that be = b. To show this, let b ∈ G. Then, choose an element

g ∈ G such that ga = b since ya = b is solvable in G. Now, be = (ga)e = ga = b which

implies e is a right identity in G. Also, since ax = e is solvable in G, we have, for each

a ∈ G, an element a′ ∈ G such that aa′ = e. By Proposition 1.2.5, G is a group.

Example 1.2.8.

• (Z,+), (Q,+) and (R,+) are infinite abelian groups.

• (Z, ·), (Q, ·) and (R, ·) are monoids.

• (2Z, ·) is a semigroup.

Example 1.2.9. Consider the square with vertices consecutively numbered 1,2,3,4 cen-

ter at the origin of the x-y plane, and sides parallel to the axes. Let

D∗4 = {R,R2, R3, I, Tx, Ty, T1,3, T2,4}

be the set of transformations of the square where

R is a counterclockwise rotation about the center of 90◦,

R2 is a counterclockwise rotation of 180◦,

R3 is a counterclockwise rotation of 270◦,

I is a rotation of 360◦ = 0◦,

Tx is a reflection about the diagonal through vertices 1 and 3, and

Ty is a reflection about the diagonal through vertices 2 and 4
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Note that each U ∈ D∗4 is a bijection of the square onto itself. Define the binary operation

in D∗4 to be the composition of functions: for U, V ∈ D∗4, U ◦ V is the transformation V

followed by the transformation U . D∗4 is a nonabelian group of order 8 called the group

of symmetries of the square.

Theorem 1.2.10. Let R(∼) be an equivalence relation on a monoid G such that a1 ∼ a2

and b1 ∼ b2 implies a1b1 ∼ a2b2 for all ai, bi ∈ G. Then the set G/R of all equivalence

classes of G under R is a monoid under the binary operation defined by ab = ab, where

x denotes the equivalence class of x ∈ G. If G is an abelian group, then so is G/R.

Proof. If a1 = a2 and b1 = b2 (ai, bi ∈ G), then a1 ∼ a2 and b1 ∼ b2 by definition

of equivalence relation. This implies a1b1 ∼ a2b2 by hypothesis which also implies

a1b1 = a2b2 by definition of equivalence relation. Therefore, the binary operation in G/R

is well-defined, that is, independent of the choice of equivalent class representatives.

Associativity:

a
(
bc
)

= a
(
bc
)

= a(bc) = (ab)c =
(
ab
)
c =

(
ab
)
c.

Identity element:

a e = ae = a = ea = e a

Therefore, G/R is a monoid. Finally, if G is an abelian group, clearly G/R is also an

abelian group.

Remark 1.2.11. If p is prime, then (Zp \ {p}, ·) is a group of order p− 1.

Definition 1.2.12. Given any sequence of elements of a semigroup G, {a1, a2. . . .} define

inductively a meaningful product of a1, a2, . . . (in this order) as follows:

• If n = 1, the only meaningful product is a1.

• If n > 1, then a meaningful product is defined to be any product of the form

(a1, . . . , am)(am+1, . . . , an) where m < n and (a1, . . . , am) and (am+1, . . . , an) are

meaningful products of m and n−m elements respectively.

Theorem 1.2.13 (Generalized Associative Law). If G is a semigroup and a1, . . . , an ∈
G, then any two meaningful products of a1, . . . , an in this order are equal.

Corollary 1.2.14 (Generalized Commutative Law). If G is a commutative semigroup

and a1, . . . , an ∈ G, then for any permutation i1, . . . , in of 1, 2, . . . , n, ai1 · · · ain =

a1 · · · an in this order are equal.
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Definition 1.2.15. Let G be a semigroup, a ∈ G and n ∈ N∗. The element an ∈ G

is defined to be the standard n product
∏n

i=1 ai with ai = a for 1 ≤ i ≤ n. If G is a

monoid, a0 is defined to be the identity element e. If G is a group, then for each n ∈ N∗,
a−n is defined to be (a−1)n ∈ G.

1.3 Homomorphisms and Subgroups

Definition 1.3.1. Let G and H be semigroups. A function f : G → H is a homomor-

phism provided

f(ab) = f(a)f(b)

for all a, b ∈ G. Moreover, if

(1) f is injective as a map of sets, it is called a monomorphism.

(2) f is surjective, then it is called an epimorphism.

(3) f is bijective, then it is called an isomorphism. In this case, G and H are said to

be isomorphic (written G ∼= H).

(4) A homomorphism f : G→ G is called an endomorphism of G.

(5) An isomorphism f : G→ G is called an automorphism of G.

Remark 1.3.2. Let f : G→ H is a homomorphism of groups. Then

(i) f(eG) = eH .

(ii) f(a−1) = f(a)−1.

Proof. eGeG = eG ⇒ f(eGeG) = f(eG)eH ⇒ f(eG)f(eG) = f(eG)eH ⇒ f(eG) = eH by

left cancellation law.

f(a)f(a−1) = f(aa−1) = f(eG) = eH = f(a)f(a)−1 ⇒ f(a−1) = f(a)−1 by left

cancellation.

Example 1.3.3.

(a) The map f : Z→ Zm defined by f(x) = x is an epimorphism of additive groups.

(b) Let 1 < m, k ∈ N∗. The map g : Zm → Zmk defined by f(x) = kx is a monomor-

phism.
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(c) Let G = {A ∈ R2×2 | det(A) 6= 0} and H = R∗. Define a map f : G → H by

f(A) = det(A). Show that f is a group homomorphism.

Definition 1.3.4. Let f : G→ H be a homomorphism of groups.

(i) The kernel of f (denoted by Kerf) is {a ∈ G | f(a) = eH}.

(ii) If A is a subset of G, then

f(A) = {b ∈ H | b = f(a) for some a ∈ A}

is the image of A. f(G) is called the image of f and denoted by Imf.

(iii) If B is a subset of H,

f−1(B) = {a ∈ G | f(a) ∈ B}

is the inverse image of B.

Theorem 1.3.5. Let f : G→ H be a homomorphism of groups. Then

i) f is a monomorphism iff Kerf = {eG}.

ii) f is an isomorphism iff there is a homomorphism f−1 : H → G such that ff−1 =

1H and f−1f = 1G.

Proof. i) Let a ∈ Kerf . Then f(a) = eH = f(eG). Since f is monomorphism, a = eG.

Suppose f(a) = f(b). Then f(ab−1) = eH which implies ab−1 ∈ Kerf = {eG}. Thus,

a = b and, hence, f is a monomorphism.

ii) By given, there is a map of sets f−1 : H → G such that f−1f = 1G and ff−1 = 1H .

Let a, b ∈ H. Since f is an isomorphism, there exists a′, b′ ∈ G such that f(a′) = a

and f(b′) = b. Now f−1(ab) = f−1(f(a′)f(b′)) = f−1(f(a′b′)) = f−1f(a′b′) = a′b′ =

f−1(a)f−1(b). Thus, f−1 is a homomorphism of groups. The converse is obvious.

Definition 1.3.6. Let G be a group and H a nonempty subset that is closed under the

product in G. If H is itself a group under the product in G, then H is said to be a

subgroup of G. This is denoted by H < G.

Example 1.3.7. Let G be a group. Then G < G and {eG} < G.

Let H be a subgroup of a group G such that H 6= G and H 6= {eG}. Then H is called
a proper subgroup of G.

a) nZ < Z for some fixed integer n.
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b) {0, 3} and {0, 2, 4} < Z6 under addition.

c) Let f : G→ H be a group homomorphism. Then

– Kerf < G.

– Let A be a subset of G. A < G⇒ f(A) < H; in particular, Imf < H.

– Let B be a subset of H. B < H ⇒ f−1(B) < G.

Theorem 1.3.8. Let H be a nonempty subset of a group G. Then H is a subgroup of

G iff ab−1 ∈ H for all a, b ∈ H.

Proof. (⇐) There exists a ∈ H and hence aa−1 ∈ H. Thus for any b ∈ H, b−1 = eb−1 ∈
H. If a, b ∈ H, then b−1 ∈ H and hence ab = a(b−1)−1 ∈ H which implies H is closed.

The product in H is associative since G is a group. Thus, H < G. The other direction

is clear.

Corollary 1.3.9. If G is a group and {Hi | i ∈ I} is a nonempty family of subgroups,

then ∩i∈IHi is a subgroup of G.

Definition 1.3.10. Let G be a group and X a subset of G. Let {Hi | i ∈ I} is

a nonempty family of subgroups of G which contain X. Then ∩i∈IHi is called the

subgroup of G generated by the set X and denoted 〈X〉.

The elements of X are the generators of the subgroup 〈X〉, which may also be gener-
ated other subsets (that is, we may have 〈X〉 = 〈Y 〉 with X 6= Y ). If X = {a1, . . . , an},
we write 〈a1, . . . , an〉 in place of 〈X〉.

Definition 1.3.11. If G = 〈a1, . . . , an〉, (ai ∈ G), G is said to be finitely generated. If

a ∈ G, the subgroup 〈a〉 is called the cyclic subgroup generated by a.

Example 1.3.12.

i) (Z,+) is an infinite cyclic group with generator 1 since by additive notation, m·1 =

m for all m ∈ Z.

ii) The trivial subgroup 〈e〉 of any group is cyclic.

iii) the multiplicative subgroup 〈i〉 in C is cyclic of order 4.

iv) for each m the additive group Zm is cyclic of order m with generator 1 ∈ Zm.

Theorem 1.3.13. If G is a group and X is a nonempty subset of G, then the subgroup

〈X〉 generated by X consists of all finite products an1
1 · · · ant

t (ai ∈ X and ni ∈ Z). In

particular, for every a ∈ G, 〈a〉 = {an | n ∈ Z}.
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If {Hi | i ∈ I} is a family of subgroups of a group G, then ∪i∈IHi is not a subgroup of
G in general. The subgroup 〈∪i∈IHi〉 generated by the set ∪i∈IHi is called the subgroup
generated by the groups {Hi | i ∈ I}. If H and K are subgroups, the subgroup 〈H ∪K〉
generated by H and K is called the join of H and K and is denoted by H ∨K (additive
notation: H +K).

1.4 Cyclic Groups

The structure of cyclic groups is relatively simple. We shall completely characterize all
cyclic groups (up to isomorphism).

Theorem 1.4.1. Every subgroup H of the additive group Z is cyclic. Either H = 〈0〉
or H = 〈m〉, where m is the least positive integer in H. If H 6= 〈0〉, then H is infinite.

Proof. If H = 〈0〉, then clearly H is cyclic. H 6= 〈0〉 implies 〈m〉 = {km | k ∈ Z}. Since

m ∈ H, we have 〈m〉 ⊂ H. Conversely, if h ∈ H, then h = mq + r with q, r ∈ Z such

that 0 ≤ r < m (Division algorithm). Since r = h − mq ∈ H, the minimality of m

implies r = 0 and, hence, h = mq ∈ 〈m〉 which implies H ⊂ 〈m〉.
If H 6= {0}, then it is clear that H = 〈m〉 is infinite.

Theorem 1.4.2. Every infinite cyclic group is isomorphic to the additive group Z and

every finite cyclic group of order m is isomorphic to the additive group Zm.

Proof. If G = 〈a〉 is a cyclic group, then the map

α : Z→ G, k 7→ ak

is an epimorphism. If Kerα = 0, then Z ∼= G by Theorem 1.3.5. Otherwise Kerα is a

nontrivial subgroup of Z and hence Kerα = 〈m〉 where m is the least positive integer

such that am = e. Now for all r, s ∈ Z,

ar = as ⇔ ar−s = e⇔ r − s ∈ Kerα = 〈m〉
⇔ m|(r − s)⇔ r = s in Zm

where k is the congruence class of k ∈ Z.

Therefore, the map β : Zm → G, k 7→ ak is a well-defined epimorphism. Since

β(k) = e⇔ ak = e⇔ k = 0 in Zm which implies β is a monomorphism.

Definition 1.4.3. Let G be a group and a ∈ G. The order of a is the order of the cyclic

subgroup 〈a〉 and is denoted by |a|.

Theorem 1.4.4. Let G be a group and a ∈ G. If a has infinite order, then
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i) ak = e⇔ k = 0.

ii) the elements ak (k ∈ Z) are all distinct.

If a has a finite order m > 0, then

iii) m is the least positive integer such that am = e.

iv) ak = e⇔ m|k.

v) ar = as ⇔ r ≡ s mod m.

vi) 〈a〉 consists of the distinct elements a, a2, . . . , am−1, am = e.

vii) for each k such that k|m, |ak| = m
k

.

Proof. Let H = 〈a〉 < G. Consider the map

α : Z→ H, k 7→ ak.

i) Since |H| =∞, then Kerα = {0} by Theorem 1.4.2. Thus ak = e⇒ k ∈ Kerα =

{0} ⇒ k = 0. If k = 0, then ak = e.

ii) if ak = am for some k,m ∈ Z, ak−m = e⇒ k −m = 0 by (i).

iii) Since |H| <∞, Kerα = 〈m〉 where m is the least positive integer such that am = e

by Theorem 1.4.2.

iv) Given am = e. If ak = e, then

ak = am ⇔ ak−m = e⇔ k −m ∈ Kerα = 〈m〉
⇔ m|(k −m)⇔ m|k.

Conversely, if m|k, then k = mq for some q ∈ Z. Then

ak = amq = (am)q = eq = e.

v) ar = as ⇔ ar−s = e⇔ m|(r − s) by (iv). Thus ar = as ⇔ r ≡ s mod m.

vi)

〈a〉 = {ak | k is an integer } but k = mq + r with 0 ≤ r < m

= {ar | 0 ≤ r < m}
= {a, a2, . . . , am−1, am = e}.
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viii)
(
ak
)m

k = am = e and (ak)r 6= e for all 0 < r < m
k

. Since otherwise akr = e with

kr < k(m
k

) = m contradicting (iii). Therefore, |ak| = m
k

.

Theorem 1.4.5. Every homomorphic image and every subgroup of a cyclic group G is

cyclic. In particular, if H is a non trivial subgroup of G = 〈a〉 and m is the least positive

integer such that am ∈ H, then H = 〈am〉.

Proof. Let f : G→ K be homomorphism of groups. Then

Imf = {k ∈ K | f(g) = k for some g ∈ G = 〈a〉}
= {k ∈ K | f(an) = k for some integer n}
= {k ∈ K | f(a)n = k and since f is a group hsm}
= {f(a)n | n is an integer}
= 〈f(a)〉.

Since am ∈ H, 〈am〉 ⊂ H. Conversely, h ∈ H ⇒ h ∈ G and, hence, h = an ∈ H for some

integer n. By Division algorithm, there exist integers q and r such that n = mq+ r with

0 ≤ r < m. Now,

an = amqar ⇒ ar = an−mq ∈ H ⇒ r = 0

by the minimality of m. Thus h = an = amq = (am)q ∈ 〈am〉. Hence, H = 〈am〉.

Note that two distinct elements in a group may generate the same cyclic subgroup.

Theorem 1.4.6. Let G = 〈a〉 be a cyclic group. If G is infinite, then a and a−1 are the

only generators of G.

Proof. Given that G = 〈a〉 = {an | n ∈ Z}. Since G is infinite, an 6= am for all

m 6= n ∈ Z by Theorem 1.4.4(ii). In particular, a 6= a−1. Thus

G = 〈a〉 = 〈a−1〉 =

{(
a−1
)−n ∣∣∣∣− n ∈ Z

}
.

Are they the only generators? Suppose that b is any generators of G. Then 〈b〉 = 〈a〉
and hence a = bn and b = am for some m and n in Z. Since a = bn = (am)n = amn ⇒
mn = 1. Since m,n ∈ Z, we must have m = n = 1 or m = n = −1. Thus b = a or

b = a−1.

Theorem 1.4.7. Let G be a group and a ∈ G such that |a| = m < ∞. Then for any

0 ≤ r < m,

|ar| = m

(m, r)

where (m, r) is the gcd of m and r.
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Proof. Let 0 ≤ r < m be fixed and d = (m, r). Then there exists integers s and t such

that d = sm + tr. Set b := ar. Since d divides both m and r, m
d

and m
r

are coprime.

Now

b
m
d = (ar)

m
d = a

rm
d = (am)

r
d = e.

On the other hand, for any integer q,

bq = e⇒ (ar)q = e⇒ arq = e⇒ |a| divides rq by Theorem 1.4.4(iv)

⇒ m|rq ⇒ m

d

∣∣∣∣rdq
⇒ m

d

∣∣∣∣q since
(m
d
,
r

d

)
= 1.

Therefore, m
d

is the least positive integer k such that bk = e. Thus |ar| = |b| = m
d

=
m

(m,r)
.

Let d ∈ Z+ such that d|m. Then |ad| = m
(m,d)

= m
d

.

Theorem 1.4.8. Let G be a finite cyclic group of order m and a ∈ G such that G = 〈a〉.
For any ar is a generator of G if and only if (r,m) = 1.

Proof. Let 1 ≤ k < m. Then by Theorem 1.4.7, ak is a generator of G if and only if

m = |ar| = m

(m, r)
⇔ (m, r) = 1.

Example 1.4.9.

1) (Z,+) is a cyclic group with 1 and -1 as the only generators.

2) (Zn,+n) is a finite cyclic group with φ(n) generators where φ(n) = |{m < n |
(m,n) = 1}|. Here φ is a function φ : Z+ → Z+, called the Euler-Totient function.

3) There are exactly two generators in each of the groups (Z3,+3), (Z4,+4) and

(Z6,+6) since φ(3) = φ(4) = φ(6) = 2.

4) Compute the order of 16 in (Z24,+24). Solution: Z24 = 〈1〉 and |1| = 24 in Z24.

But

|16| = 24

(16, 24)
=

24

8
= 3

by Theorem 1.4.7.
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5 Determine all the generators of 36Z + 24Z. The 36Z + 24Z = 12Z (see Exer-

cise 1.4.10 2) below) is an infinite cyclic group generated by 12. Thus 12 and -12

are the only generators of 36Z + 24Z.

Exercise 1.4.10.

1) Let p be a prime number. Determine the number of generators of the group

G = (Zp,+p).

2) For any positive integers a and b, prove that (left as an exercise)

aZ + bZ = gcd(a, b)Z and aZ ∩ bZ = lcm(a, b)Z.

For the following section we need the following definition:

Definition 1.4.11. Let A be a non-empty set. A relation R on A×A is an equivalence

relation on A provided R is:

reflexive: (a, a) ∈ R for all a ∈ A; (1.1)

symmetric: (a, b) ∈ R⇒ (b, a) ∈ R; (1.2)

symmetric: (a, b) ∈ R and (b, c) ∈ R⇒ (a, c) ∈ R . (1.3)

If R is an equivalence relation on A and (a, b) ∈ R, we say that a is equivalent to b under

R and write a ∼ b or aRb. For instance, instead of writing (a, b) ∈ R we write as a ∼ b.

Definition 1.4.12. Let R(∼) be an equivalence relation on A. If a ∈ A, the equivalence

class of a (denoted a) is the class of all those elements of A that are equivalent to a,

that is, a = {b ∈ A | b ∼ a}. The class of all equivalence equivalence classes is denoted

by A/R and called the quotient class of A by R.

and, hence, we have the following remark:

Remark 1.4.13. Let R(∼) be an equivalence relation on A. Then

(i) a 6= ∅ for every a ∈ A;

(ii) if A is a set, ∪a∈Aa = A = ∪a∈A/Ra;

(iii) a = b⇔ a ∼ b, and

(iv) For a, b ∈ A, either a ∩ b = ∅ or a = b.
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Proof. (i) and (ii) Since R is reflexive, a ∈ a for every a ∈ A, a 6= ∅ and, hence, (ii)

holds. (iii) For if a = b, then a ∈ a ⇒ a ∈ b ⇒ a ∼ b. Conversely, if a ∼ b and c ∈ a,

then c ∼ a and a ∼ b ⇒ c ∼ b ⇒ c ∈ b; a symmetric argument shows that b ⊆ a and

therefore a = b. (iii) is clear. (iv) If a∩ b 6= ∅, then there is an element c ∈ a∩ b. Hence,

by definition a ∼ c and c ∼ b which implies a ∼ b and, hence, a = b by the fact in

(ii).

1.5 Cosets and Counting

In this section, we discuss the notion of cosets. This section introduces us the first
significant theorems relating the structure of a finite group G with the number theoretic
properties of its order |G|. To begin with, let us extend the concept of congruence
modulo m in the group Z. Before introducing this, we recall the reader the concept of
congruence modulo m in the group Z in the following remark:

Remark 1.5.1.

a ≡ b mod m⇔ m | a− b
⇔ a− b = mq ∈ 〈m〉 = {mk | k ∈ Z}.

In the following definition, we extend the concept of congruence modulo m in the
group Z.

Definition 1.5.2. Let H be a subgroup of a group G and a, b ∈ G.

a) a is a right congruent to b modulo H, denoted a ≡r b mod H if ab−1 ∈ H.

b) a is a left congruent to b modulo H, denoted a ≡l b mod H if a−1b ∈ H.

Remark 1.5.3.

◦ If G is abelian, then right and left congruence modulo H coincide (since ab−1 ∈
H ⇔ (ab−1)−1 ∈ H and (ab−1)−1 = ba−1 = a−1b).

◦ There exist non abelian groups G and subgroups H such that right and left con-

gruence coincide but this is not true in general. (give a counter example)

Theorem 1.5.4. Let H be a subgroup of a group G.

i) Right (resp. left) congruent modulo H is an equivalence relation on G.

ii) The equivalence class of a ∈ G under right (resp. left) congruence modulo H is the

set Ha = {ha | h ∈ H} (resp. aH = {ah | h ∈ H}).
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iii) |Ha| = |H| = |aH| for all a ∈ G.

Proof. We prove the theorem for right congruence and right cosets. Analogous argu-

ments apply to left congruence.

i) Let a, b, c ∈ G. Then a ≡ amodH since aa−1 = e ∈ H; hence ≡ is reflexive. Since

a ≡r bmodH ⇒ ab−1 ∈ H

⇒
(
ab−1

)−1 ∈ H
⇒ ba−1 ∈ H ; since

(
ab−1

)−1
= ba−1

⇒ b ≡r amodH.

∴ ≡r is symmetric.

i) If a ≡r bmodH and b ≡r cmodH, we have ab−1 ∈ H and bc−1 ∈ H. Then

ac−1 = (ab−1) (bc−1) ∈ H which implies a ≡r cmodH. Therefore, ≡r is transitive.

Thus, right congruence modulo H is an equivalence relation.

ii) The equivalence class of a ∈ G under right congruence is

{x ∈ G | x ≡r modH} = {x ∈ G | xa−1 ∈ H}
= {x ∈ G | xa−1 = h ∈ H}
= {x ∈ G | x = ha;h ∈ H}
= {ha ∈ H | h ∈ H}
= Ha.

iii) The map α : Ha→ H given by α(ha) = h is easily seen to be a bijective.

Corollary 1.5.5. Let H be a subgroup of a group G.

a) G is union of the right (resp. left) cosets of H in G.

b) Two right (resp. left) cosets of H in G are either disjoint or equal.

c) For all a, b ∈ G, Ha = Hb⇔ ab−1 ∈ H and aH = bH ⇔ a−1b ∈ H.

d) If RH is the set of distinct right cosets of H in G and LH is the set of distinct left

cosets of H in G, then |RH | = |LH |.
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Proof. a) - c) are immediate consequences of Remark 1.4.13. d) The map RH → LH

given by Ha 7→ a−1H is a bijection since Ha = Hb ⇔ ab−1 ∈ H ⇔ (a−1)
−1
b−1 ∈ H ⇔

a−1H = b−1H.

Additive Notation: If H is a subgroup of a group G, then right congruence modulo
H is defined by a ≡r bmodH ⇔ a− b ∈ H. The equivalence class of a ∈ G is the right
coset H + a = {h+ a | h ∈ H}.

Definition 1.5.6. Let H be a subgroup of a group G. The index of H in G, denoted

[G : H], is the cardinal number of the set of distinct right (resp. left) cosets of H in G.

Remark 1.5.7.

† If G = Z and H = mZ, then [G : H] = m. Here G and H are infinite groups

however the index [G : H] is not.

† If H = 〈e〉, then Ha = {a} for every a ∈ G and [G : H] = |G|.

Theorem 1.5.8. If K,H,G are groups with K < H < G, then [G : K] = [G : H][H :

K]. If any of two of these indices are finite, then so is the third.

Proof. By Corollary 1.5.5 G = ∪i∈IHai with ai ∈ G, |I| = [G : H] and the cosets

Hai mutually disjoint (that is, Hai = Haj ⇔ i = j). Similarly, H = ∪j∈JKbj with

bj ∈ H, |J | = [H : K] and the cosets Kbj mutually disjoint. Therefore,

G = ∪i∈IHai = ∪i∈I (∪j∈JKbj) ai = ∪(i,j)∈(I×J)Kbjai .

It suffieces to show that the cosets Kbjai are mutually disjoint. For then by Corol-

lary 1.5.5, we must have

[G : K] = |I × J | = |I||J | = [G : H][H : K] .

To show this, if Kbjai = Kbrat, then bjai = kbrat (k ∈ K). Since bj, br, k ∈ H, we have

Hai = Hbjai = Hkbrat = Hat ⇒ i = t and bj = kbr. Thus Kbj = Kkbr = Kbr ⇒ j = r.

Therefore, the cosets Kbjai are mutually disjoint. The last statement of the theorem is

easy to show.

Corollary 1.5.9 (Lagrange). If H is a subgroup of a group G, then |G| = [G : H]|H|.
In particular, if G is finite, the order |a| of a ∈ G divides |G|.

Proof. Let K = 〈e〉. Then by the above theorem |G| = [G : K] = [G : H][H : K] = [G :

H]|H|. In particular, if H = 〈a〉, then |H| divides |G|.
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Proposition 1.5.10. If H and K are subgroups of a group G, then [H : H ∩K] ≤ [G :

K]. If [G : K] is finite, then [H : H ∩K] ≤ [G : K] if and only if G = KH.

Proof. Let A be the set of all right cosets of H ∩K in H. Let B be the set of all right

cosets of K in G. Consider the map

φ : A −→ B

(H ∩K)h 7→ Kh.

Since (H ∩K)h1 = (H ∩K)h2 ⇒ h1h
−1
2 ∈ H ∩K ⊂ K, we have Kh1 = Kh2. Thus φ is

well-defined. Let us show that the map φ is injective.

φ ((H ∩K)h1) = φ ((H ∩K)h2)⇒ Kh1 = Kh2 ⇒ h1h
−1
2 ∈ K .

But since h1, h2 ∈ H < G, we have

h1h
−1
2 ∈ H ⇒ h1h

−1
2 ∈ H ∩K ⇒ (H ∩K)h1 = (H ∩K)h2 .

Then [H : H ∩K] = |A| ≤ |B| = [G : K]. If G is finite, then we show that

a) [H : H ∩K] = [G : K] if and only if φ is surjective.

b) φ is surjective if and only if G = KH.

To see this, |A| = [H : H ∩K] = [G : K] = |B| if and only if φ is bijective. Since φ is

already injective, the statement is true if φ is surjective. But the map φ is surjective if

and only if KH = φ(A) = B and B = KH if and only if G = KH.

Remark 1.5.11. We can also rewrite the above proposition as follows: If H and K

are subgroups of a group G, then [K : H ∩ K] ≤ [G : H]. If [G : H] is finite, then

[K : H ∩K] = [G : H] if and only if G = HK.

Proposition 1.5.12. Let H and K be subgroups of finite index of a group G. Then

[G : H ∩K] is finite and [G : H ∩K] ≤ [G : H][G : K]. Furthermore, [G : H ∩K] =

[G : H][G : K] if and only if G = HK.

Proof. [G : H] and [G : K] are finite and

H∩K < H,K < G⇒ [G : H∩K] = [G : H][H : H∩K] and [G : H∩K] = [G : K][K : H∩K] .

By Proposition 1.5.10, we have

[H : H ∩K] ≤ [G : K] <∞⇒ [H : H ∩K] is also finite .
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Similarly, [K : H ∩K] is finite, see Remark 1.5.11. But

[G : H ∩K] = [G : H][H : H ∩K] ≤ [G : H][G : K]

since [H : H ∩ K] ≤ [G : K] ⇒ [G : H ∩ K] is finite. Furthermore, note that in

Remark 1.5.11 it is stated that [K : H ∩K] = [G : H] if and only if G = HK. We thus

have

[G : K][G : H] = [G : K][K : H ∩K] = [G : H ∩K]⇔ G = HK

1.6 Normality, Quotient Groups and Homomorphisms

Subgroups N os a group G such that left and right congruence modulo N coincide paly
an important role in determining both the structure of a group G and the nature of
homomorphisms with domain G.

Theorem 1.6.1. If N is a subgroup og a group G, then the following conditions are

equivalent:

(i) Left and right congruence modulo N coincide (that is, define the same equivalence

relation on G).

(ii) every left coset of N in G is a right coset of N in G.

(iii) aN = Na for all a ∈ G.

(iv) for each a ∈ G, aNa−1 ⊆ N , where aNa−1 = {ana−1 | n ∈ N}.

(v) for each a ∈ G, aNa−1 = N .

Proof. (i) ⇔ (iii) Two equivalence relations R and S are identical if and only if the

equivalence class of each element under R is equal to its equivalence class unser S. In

this case, the equivalence classes are the left and right cosets respectively of N . (ii)

⇒ (iii) If aN = Nb for some b ∈ G, then a ∈ Nb ∩ Na ⇒ Nb = Na since two right

cosets are either disjoint or equal. (iii) ⇒ (iv) Let x ∈ aNa−1. Then x = ana−1 for

some n ∈ N . But x = ana−1 = naa−1 = n ∈ N since an = na. (iv) ⇒ (v) By given,

a−1Na ⊆ N since a−1 ∈ G. Then n = a(a−1na)a−1 ∈ aNa−1 since a−1na ∈ N . (v) ⇒
(ii) is immediate.
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Definition 1.6.2. A subgroup N of a group G which satisfies the equivalent conditions

of Theorem 1.6.1 is said to be normal in G (or a normal subgroup of G) and is denoted

by N / G.

Remark 1.6.3.

(a) If G is a group with subgroups N and M such that N /M and M /G, it doea not

follow that N / G.

(b) If N is normal in G, then it is normal in every subgroup of G containing N .

Proof. Left as an exercise.

Recall that the join

H ∨K =

{
r∏
i=1

hiki

∣∣∣∣ hi ∈ H, ki ∈ K
}

of two subgroups is the subgroup 〈H ∪K〉 generated by H and K.

Theorem 1.6.4. Let K and N be subgroups of a group G with N normal in G. Then

i) N ∩K /K

ii) N / N ∨K

iii) NK = N ∨K = KN

iv) K / G and K ∩N = 〈e〉 ⇒ nk = kn for all k ∈ K and n ∈ N .

Proof. i) If n ∈ N ∩K and a ∈ K, then ana−1 ∈ N since N / G and ana−1 ∈ K since

K < G. Thus a(N∩K)a−1 ⊆ N∩K and N∩K / K. ii) Since N < N∨K and N/G, we

have N / N ∨K. iii) Let x ∈ N ∨K. Then x = n1k1 · · ·nrkr with ni ∈ N, ki ∈ K. Since

N /G, nikj = kjn
′
i, n
′
i ∈ N , x can be rewritten as x = n(k1 · · · kr) for some n ∈ N . This

implies that N ∨K ⊆ NK. Since the other inclusion is obvious, we have N ∨K = NK.

iv) Let k ∈ K and n ∈ N . Then nkn−1 ∈ K since K /G and kn−1k−1 ∈ N since N /G.

Hence (nkh−1) k−1 = n (kn−1k−1) ∈ N ∩K = 〈e〉 ⇒ nk = kn.

Theorem 1.6.5. If N is a normal subgroup of a group G and G/N is the set of all

(left) cosets of N in G, then G/N is a group of order [G : N ] under the binary operation

given by (aN)(bN) = abN .



1.6. Normality, Quotient Groups and Homomorphisms 21

Proof. Since the cosets aN, bN, abN are the equivalence classes of a, b, ab ∈ G, respec-

tively, under the equivalence relation of congruence modulo N , if suffices by Theo-

rem 1.2.10 to show that congruence modulo N is a congruence relation, that is,

a1 ≡ bmodN and b1 ≡ bmodN ⇒ a1b1 ≡ abmodN .

By assumption, a1a
−1 = n1 ∈ N and b1b

−1 = n2 ∈ N . Hence (a1b1)(ab)1−1 =

a1b1b
−1a−1 = a1n2a

−1. Since N is normal in G, a1N = Na1 ⇒ a1n2 = n3a1 for

some n3 ∈ N . Consequently,

(a1b1)(ab)1−1 = n3a1a
−1 = n3n1 ∈ N ⇒ a1b1 ≡ abmodN .

Definition 1.6.6. If N ia a normal subgroup of a group G, then the group G/N , as int

he above theorem, is called the quotient group or factor group of G by N . If G is written

additively, then the group operation in G/N is given by (a+N)+(b+N) = (a+b)+ N.

Remark 1.6.7. If m > 1 is a (fixed) integer and k ∈ Z, then Remark 1.5.1 shows that

the equivalence class of k under the congruence modulo m is precisely the coset of 〈m〉
in Z which contains k, that is, as sets, Zm = Z/〈m〉. Theorem 1.2.10 and Theorem 1.6.5

show that the group operations coincide, whence Zm = Z/〈m〉 as groups.

1.6.1 Relationships between Normal subgroups, Quotient groups

and Homomorphisms

In this subsection we explore the relationships between normal subgroups, quotient
groups and Homomorphisms. We begin with following theorem:

Theorem 1.6.8. If f : G→ H is a homomorphism of groups, then the kernel of f ,

kerf = {a ∈ G | f(a) = eH}

is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then the map

π : G→ G/N, a 7→ aN is an epimorphism with kernel N .

Proof. Let x ∈ kerf and a ∈ G. Then

f(axa−1) = f(a)f(x)f(a−1) = f(a)f(a)−1 = eH

⇒ axa−1 ∈ kerf ⇒ a kerfa−1 ⊆ kerf

⇒ kerf / G .
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The map π is clearly surjective and since π(ab) = abN = (aN)(bN) = π(a)π(b), this

map is an epimorphism. Now

kerπ = {a ∈ G | π(a) = eN = N}
= {a ∈ G | aN = N}
= {a ∈ G | a ∈ N} = N .

Definition 1.6.9. The map π : G → G/N is called the canonical epimorphism or

projection.

Hereafter unless stated otherwise G → G/N (N / G) always denotes the canonical
epimorphism.

Theorem 1.6.10. If f : G → H is a homomorphism of groups and N is a normal

subgroup of G contained in the kernel of f , there is a unique homomorphism f : G/N →
H such that f(aN) = f(a) for all a ∈ G, that is, the diagram

G

π
��

f // H

G/N
f

<<

is commutative. Moreover,

i) Imf = Imf

ii) kerf = kerf/N and

iii) f is an isomorphism if and only if f is an epimomorphism and N = kerf .

Proof. First we show that the map f is well-defined. To see this, suppose aN = bN .

Then

aN = bN ⇒ b = be ∈ bN = aN

⇒ b = an, n ∈ N
⇒ f(b) = f(an) = f(a)f(n) = f(a)e = f(a) since N < kerf

⇒ f(bN) = f(aN) .



1.6. Normality, Quotient Groups and Homomorphisms 23

If b ∈ aN , then b = an, n ∈ N , and f(b) = f(a)f(n) = f(a)e = f(a) since N < kerf .

Therefore, f has the same effect on every element of the coset aN and the map f is a

well-defined funtion. Since

f(aNbN) = f(abN) = f(ab) = f(a)f(b) = f(aN)f(bN),

f is a group homomorphism. Clearly Imf = Imf and

kerf = {an ∈ G/N | f(aN) = eH}
= {aN ∈ G/N | f(a) = eH}
= {aN ∈ G/N | a ∈ kerf}
= {aN | a ∈ kerf ∩G}
= {aN | a ∈ kerf}
= kerf/N .

The map f is unique since it is completely determined by f . Finally it is clear that f is

an epimorphism if and only if f is. By Theorem 1.3.5, f is a monomorphism if and only

if kerf = kerf/N is a trivial subgroup of G/N which occurs if and only if kerf = N .

Corollary 1.6.11 (First Isomorphism Theorem(FIT)). If f : G → H is a homomor-

phism of groups, then f induces an isomorphism G/kerf ∼= Imf .

Proof. f : G→ Imf is an epimorphism. Let N = kerf . By Theorem 1.6.8, N is a normal

subgroup of G. By Theorem 1.6.10, there exists a unique injective (since N = kerf)

map f : G/N → Imf such that the diagram

G

π
��

f // Imf

G/N
f

;;

is commutative. Since f is an epimorphism so is f . Thus f is an isomorphism.

Corollary 1.6.12. If f : G → H is a homomorphism of groups, N / G, M / H, and

f(N) < M , then f induces a homomorphism f : G/N → H/M , given by aN 7→ f(a)M .

Moreover, f is an isomorphism if and only if Imf ∨ M = H and f−1(M) ⊆ N . In

particular, if f is an epimorphism such that f(N) = M and kerf ⊆ N , then f is an

isomorphism.
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Proof. Consider the composition map G
f // H π // H/M . Since f(N) < M , we have

N ⊆ f−1(M) and

kerπf = {a ∈ G | πf(a) = M}
= {a ∈ G | f(a)M = M}
= {a ∈ G | f(a) ∈M}
= {a ∈ G | a ∈ f−1(M)}
= G ∩ f−1(M) = f−1(M) .

Now consider the diagram

G

π ′

��

πf // H/M

G/N
f

;;
.

which is commutative by construction. By Theorem 1.6.10 (applied to πf), f given

by aN 7→ πf(a) = f(a)M , see the above diagram, is a homomorphism that is an

isomorphism if and only if πf is an epimorphism and N = kerπf . Thus it suffices to

show that πf is an epimorphism and N = kerπf if and only if Imf ∨ M = H and

f−1(M) ⊆ N . To see this,

πf is an epimorphism ⇔ πf(G) = H/M

⇔ f(G)M = H/M

⇔ f(G) = H

⇔ H = Imf = Imf ∨M .

If N = kerπf = f−1(M), then clearly f−1(M) ⊆ N . Conversely, if f−1(M) ⊆ N , then

N = kerπf = f−1(M) since N ⊆ f−1(M). In particular, if f is an epimorphism, then

H = Imf = Imf ∨M . If f(N) = M and kerf ⊆ N , then f−1(M) ⊆ N since

x ∈ f−1(M)⇒ f(x) ∈M = f(N)

⇒ f(x) = f(n) for some n ∈ N
⇒ f(xn−1) = eH

⇒ xn−1 ∈ kerf ⊆ N

⇒ xn−1 = n1 for some n1 ∈ N
⇒ x = n1n ∈ N

Thus f is an isomorphism.
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Corollary 1.6.13 (Second Isomorphism Theorem(SIT)). If K and N are subgroups of

a group G, with N normal in G, then K/(K ∩N) ∼= NK/N .

Proof. Since K,N < G and N /G, we have N / N ∨K = NK = KN by Theorem 1.6.4

(ii-iii). Consider the composition map f = π ◦ ι : K ι // NK
π // NK/N . Clearly f

is a group homomorphism with kernel K ∩N , whence the map f : K/(N ∩K)→ Imf

is an isommorphism by the first isomorphism theorem, see Corollary 1.6.11. Now it

remains to show that Imf = NK/N . Note that every element in NK/N is of the

form nkN (n ∈ N, k ∈ K). The normality of N implies that nk = kn1 (n1 ∈ N),

whence nkN = kn1N = kN = f(k). Therefore, f is an epimorphism and hence Imf =

NK/N .

Example 1.6.14. Consider the group (Z,+) of integers and let M = 〈3〉 = 3Z and

N = 〈5〉 = 5Z. Since + is commutative on Z, M and N are normal subgroups of Z.

Moreover, we have M ∩N = 15Z and M +N = Z. Thus by SIT

3Z/15Z ∼= Z/5Z .

Note that 3Z/15Z = {0, 3, 6, 9, 12} and Z/5Z = {0, 1, 2, 3, 4}.

Corollary 1.6.15 (Third Isomorphism Theorem(TIT)). If H and K are normal sub-

groups of a group G such that K < H, then H/K is a normal subgroup of G/K and

(G/K)/(H/K) ∼= G/H.

Proof. The identity map 1G : G → G has 1G(K) = K < H and therefore induces an

epimorphism π : G/K → G/H, with π(aK) = aH. Since H = π(aK) if and only if

a ∈ H, kerπ = {aK | a ∈ H} = H/K. Hence H/K / G/K by Theorem 1.6.8 and

G/H = Imπ ∼= (G/K)/kerπ = (G/K)/(H/K) by FIT.

1.7 Symmetric, Alternating and Dihedral Groups

Definition 1.7.1. Let X be a non-empty set. Any bijection of X onto itself is called

a permutation on X. The set S(x) of all permutations on X forms a group under the

composition of mappings. Any subgroup og X is called a group of permutation on X.

Definition 1.7.2. For any positive integer, the set In is defined by In = {1, 2, . . . , n} and

the group (S(In), ◦) of permutations on In is denoted by Sn and is called the symmetric

group of degree n.
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Definition 1.7.3. Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In. Then (i1i2i3 · · · ir)
denotes the permutation that maps i1 7→ i2, ı2 7→ i3, . . . , ir−1 7→ ir and ir 7→ i1, and

maps every other element of In onto itself. This permutation, (i1i2i3 · · · ir), is called a

cycle of length r or an r-cycle. A 2-cycle is called a transposition.

Remark 1.7.4.

a) A 1-cycle (k) is the identity permutation.

b) An r-cycle is an element of order r in Sn.

Proof. If σ = (σ1 · · ·σr) is an r-cycle in Sn, then σ(σ1) = σ2, σ
2(σ1) = σ3, . . . , σ

r(σ1) =

σ1. Similarly, σr(σi) = σi for i = 2, . . . , r. Since σr fixes all the other elements,

it is the identity permutation. But none of the permutations σ, σ2, . . . , σr−1 equal

the identity permutation because they all move the element σ1. Hence the order

of σ is r.

c) Let τ be a cycle such that τ(i) 6= i for some i ∈ In. Then

τ =

(
i τ(i) τ(τ(i)) · · · τ d(i)

τ(i) τ(τ(i)) · · · τ d(i) i

)

for some d ≥ 1.

Proof. Assume that τ = (i1i2 · · · id) be a d-cycle permutation for some d ≥ 1.

Since τ(i) 6= i for some i ∈ In, then we get that i = ik for 1 ≤ k ≤ d. Now

τ(i) = τ(ik) = ik+1

τ 2(i) = τ(ik+1) = ik+2

...

τ d−k(i) = τ(id−1) = id

τ d−k+1(i) = τ(id) = i1
...

τ (d−k)+(k−1)(i) = τ(ik−2) = ik−1

τ d(i) = τ(ik−1) = ik = i .
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d) The inverse of the cycle (i1i2 · · · ir) is the cycle

(irir−1 · · · i2i1) = (i1irir−1 · · · i2) .

e) The cyclic representation (i1i2 · · · ir) is not unique. That is, (i1i2 · · · ir) = (i2 · · · iri1)
For example,

τ =

(
1 2 3 4

4 1 2 3

)
is a 4-cycle

= (1432) = (4321) = (3214) = (2143)

f) If τ = (i1 . . . ir) is an r-cycle in Sn, then τ is an r-cycle in Sm for all m ≥ n. In

fact, if m is the maximum of i1, i2, . . . , ir, then τ = (i1 . . . ir) is an r-cycle in Sm.

g) The composition of two permutation may not commute, that is, if τ, σ ∈ Sn, then

it is not always true that τσ = στ . For example, if σ is the 3-cycle (125) and τ is

as in e), then

στ = (125)(1432) = (1435) 6= (2543) = (1432)(125) = τσ .

Definition 1.7.5. The permutation σ1, σ2, . . . , σr of Sn are said to be disjoint provided

that for each 1 ≤ i ≤ r, and every k ∈ In,

σi(k) 6= k ⇒ σj(k) = k

for all j 6= i.

In other words, σ1, σ2, . . . , σr are disjoint if and only if no element of In is moved by
more than one of σ1, σ2, . . . , σr. In this case, the composition of two disjoint permutations
commutes.

Permutations that are not cycles can be split up into two or more cycles as follows:

Definition 1.7.6. If σ is a permutation in Sn and i ∈ {1, 2, 3, . . . , n}, the orbit of i

under σ consists of the distinct elements i, σ(i), σ2(i), . . ..

Based on the above definition, we can split a permutation up into its different orbits,
and each orbit will give rise to a cycle.

Example 1.7.7. Consider the permutation

σ =

(
1 2 3 4 5 6 7 8

3 2 8 1 5 7 6 4

)
∈ S8.
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Here σ(1) = 3, σ2(1) = 8, σ3(1) = 4, and σ4(1) = 1; thus the orbit of 1 is {1, 3, 8, 4}.
This is also the orbit of 3, 4, and 8. This orbit gives rise to the cycle (1 3 8 4). Since σ

leaves 2 and 5 fixed, their orbits are {2} and {5}. The orbit of 6 and 7 is {6, 7}, which

gives rise to the 2-cycle (2, 6).

Theorem 1.7.8. Every nonidentity permutation in Sn is uniquely (up to the order of

the factors) a product of disjoint cycles, each of which has length at least 2.

Corollary 1.7.9. The order of a permutation σ ∈ Sn is the least common multiple of

the order of its disjoint cycles.

Proof. Let σ = σ1 · · ·σr, with {σi} disjoint cycles. Since disjoint cycles commute, σm =

σm1 · · ·σmr for all m ∈ Z and σm = (1) if and only if σmi = (1) for all i. Thus, by

Theorem 1.4.4, σm = (1) if and only if |σi| divides m for all i. Since |σ| is the least such

m, the conclusion follows.

Example 1.7.10. Find the order of the permutation

σ =

(
1 2 3 4 5 6 7 8

3 5 8 7 1 4 6 2

)
.

We can write this permutation in terms of disjoint cycles as

σ =
(

1 3 8 2 5
)
◦
(

4 7 6
)
.

By Corollary 1.7.9, the order of σ is lcm(5, 3) = 15.

Corollary 1.7.11. Every permutation in Sn can be written as a product of (not neces-

sarily disjoint) transpositions.

Proof. It suffices by Theorem 1.7.8 to show that every cycle is a product of transpo-

sitions. For r = 1, we have (x1) = (x1x2)(x1x2) and for r > 1, (x1x2x3 · · ·xr) =

(x1xr)(x1xr−1) · · · (x1x3)(x1x2).

1.7.1 Odd and Even Permutations

Definition 1.7.12. A permutation σ ∈ Sn is said to be even (resp. odd) if σ can be

written as a product of an even (resp. odd) number of transpositions.

The sign of a permutation τ , denoted sgn τ , is 1 or −1 according as τ is even or odd.
The fact that sgn τ is well-defined is an immediate consequence of

Theorem 1.7.13. A permutation in Sn(n ≥ 2) cannot be both even and odd.
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Theorem and Definition 1.7.14. For each n ≥ 2, let An be the set of all even

permutations of Sn. Then An is a normal subgroup of Sn of index 2 and order |Sn|/2 =

n!/2. Furthermore, An is the only subgroup of Sn of index 2. The group An is called

the alternating group on n letters or the alternating group of degree n.

Proof. Let C be the multipicative subgroup {1,−1} of the integers. Consider the map

f defined as

f : Sn → C,

σ 7→ sgnσ .

Clearly, it is easy to see that the map f is an epimorphism of groups. The kernel of f

is An and, hence, is a normal subgroup of Sn since the kernel is normal in Sn. Thus, by

the first isomorphism theorem of groups, we have

Sn/An ∼= C

which implies [Sn : An] = 2 and |An| = Sn/2. Show uniqueness!

Definition 1.7.15. A group G is said to be simple if G has no proper normal subgroups.

The only simple abelian groups are the Zp with p prime. In fact, there are a number
of nonabelian simple groups, in particular, we have:

Lemma 1.7.16. The alternating group An is simple if and only if n 6= 4.

1.8 Categories: Products, Coproducts, and Free Objects

Categories will serve as a useful language and provide a general context for dealing with
a number of different mathematical situations.

The intuitive idea underlying the definition of a category is that several of the math-
ematical objects already introduced (sets, groups, monoids) or to be introduced (rings,
modules) together with the appropriate maps of these objects (functions for sets; homo-
morphisms for groups, etc.) have a number of formal properties in common.

Definition 1.8.1. A category is a class C of objects (denoted A,B,C, . . .) together with

i) a class of disjoint sets, denoted hom(A,B), one for each pair of objects in C;
(an element f of hom(A,B) is called a morphism form A to B and is denoted

f : A→ B);
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ii) for each triple (A,B,C) of objects of C a function

hom(B,C)× hom(A,B)→ hom(A,C);

(for morphism f : A → B, g : B → C, this function is written (g, f) 7→ g ◦ f and

g ◦ f : A→ C is called the composite of f and g); all subject to the two axioms:

1. Associativity: If f : A→ B, g : B → C, h : C → D are morphisms of C, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. Identity: For each object B of C there exists a morphism 1B : B → B such

that for any f : A→ B, g : B → C,

1B ◦ f = f and g ◦ 1B = g .

Definition 1.8.2. In a category a morphism f : A→ B is called an equivalence if there

is in C a morphism g : B → A such that g ◦ f = 1A and f ◦ g = 1B. The composite of

two equivalences, when defined, is an equivalence. If f : A → B is an equivalence, A

and B are said to be equivalent.

Example 1.8.3.

a) Let S be the class of all sets. For A,B ∈ S, hom(A,B) is the set of all functions

f : A→ B. Then S is easily seen to be a category.
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