DILLA UNIVERSITY
 DEPARTMENT OF MATHEMATICS

Advanced Linear Algebra Exercise 1 due on Dec 14, 2018, 8:30 AM

1. Let \mathbb{R} be the set of real numbers, and let

$$
V=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}=\mathbb{R}^{2 \times 2}
$$

be the set of all 2×2 matrices with entries in \mathbb{R}. Show that V is an \mathbb{R}-vector space and show also that the subset

$$
U=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a+3 b-4 c=0\right\}
$$

of V is a subspace of V. Furthermore, find $\operatorname{dim} V$ and $\operatorname{dim} U$.
2. Which of the following sets are subspaces of \mathbb{R}^{3} ? If the set is indeed a subspace, find a basis for the subspace and compute its dimension.
a) $U=\{(x, y, z) \mid 7 x-2 y+10 z=0\}$
b) $V=\left\{(x, y, z) \mid 2 x-y^{2}=0\right\}$
3. Let $\tau: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the projection defined for any $u=(x, y, z) \in \mathbb{R}^{3}$ by $\tau(u)=$ $(x, y, 0)$. Show that τ a L.T.
4. Define $\tau: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $\tau(x, y, z)=(z-x, x+y)$. Is τ a L.T? If so, compute $\tau\left(e_{1}\right), \tau\left(e_{2}\right)$ and $\tau\left(e_{3}\right)$ and show that $\tau(x, y, z)=x \tau\left(e_{1}\right)+y \tau\left(e_{2}\right)+z \tau\left(e_{3}\right)$.
5. Let V and W be vector spaces over over a field F and let $\mathcal{B}=\left\{v_{i} \mid i \in I\right\}$ is a basis for V. Then for any $\tau \in \mathcal{L}(V, W)$, we have $\operatorname{im}(\tau)=\langle\tau(\mathcal{B})\rangle$.
6. Let τ be a L.T from a vector space V into a vector space W. Then
i) $\tau(0)=0$.
ii) $\tau(-v)=-\tau(v)$ for all $v \in V$.
iii) $\tau(u-v)=\tau(u)-\tau(v)$ for all $u, v \in V$.

