DILLA UNIVERSITY DEPARTMENT OF MATHEMATICS

Algebra I Exercise 1 due on Dec 14, 2018, 8:30 AM

- 1. Let a, b be elements of group G. Show that
 - i) $|a| = |a^{-1}|,$
 - ii) |ab| = |ba|, and
 - iii) $|cac^{-1}| = |a|$ for all $c \in G$
- 2. Prove that the following conditions on a group G are equivalent (**Abelian Relations**):
 - (i) G is abelian;
 - (ii) $(ab)^2 = a^2b^2$ for all $a, b \in G$;
 - (iii) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$;
 - (iv) $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$ and all $a, b \in G$;
- 3. If $a^2 = e$ for all elements a of a group G, then prove that G is abelian. (Groups of Involutions)
- 4. Let Q_8 be the group (under ordinary matrix multiplication) generated by the complex matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, where $i^2 = -1$. Show that Q_8 is a nonabelian group of order 8. The group Q_8 is called the *quaternion group*. [Hint: Observe that $BA = A^3B$, whence every element of Q_8 is of the form A^iB^j . Note also that $A^4 = B^4 = I$, where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity element of Q_8 .]
- 5. Let S be a nonempty subset of a group G and define a relation on G by $a \sim b$ if and only if $ab^{-1} \in S$. Show that \sim is an equivalence relation if and only if S is a subgroup of G.
- 6. Let $f : G \to H$ be a homomorphism of groups, A a subgroup of G, and B a subgroup of H. Show that $f^{-1}(B)$ (resp. f(A)) is a subgroup of G (resp. H).