DILLA UNIVERSITY
 DEPARTMENT OF MATHEMATICS

Algebra I Exercise 1

due on Dec 14, 2018, 8:30 AM

1. Let a, b be elements of group G. Show that
i) $|a|=\left|a^{-1}\right|$,
ii) $|a b|=|b a|$, and
iii) $\left|c a c^{-1}\right|=|a|$ for all $c \in G$
2. Prove that the following conditions on a group G are equivalent (Abelian Relations):
(i) G is abelian;
(ii) $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$;
(iii) $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$;
(iv) $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$ and all $a, b \in G$;
3. If $a^{2}=e$ for all elements a of a group G, then prove that G is abelian. (Groups of Involutions)
4. Let Q_{8} be the group (under ordinary matrix multiplication) generated by the complex matrices $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$, where $i^{2}=-1$. Show that Q_{8} is a nonabelian group of order 8. The group Q_{8} is called the quaternion group. [Hint: Observe that $B A=A^{3} B$, whence every element of Q_{8} is of the form $A^{i} B^{j}$. Note also that $A^{4}=B^{4}=I$, where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity element of Q_{8}.]
5. Let S be a nonempty subset of a group G and define a relation on G by $a \sim b$ if and only if $a b^{-1} \in S$. Show that \sim is an equivalence relation if and only if S is a subgroup of G.
6. Let $f: G \rightarrow H$ be a homomorphism of groups, A a subgroup of G, and B a subgroup of H. Show that $f^{-1}(B)$ (resp $\left.f(A)\right)$ is a subgroup of $G($ resp $H)$.
